Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44207
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基(Pen-Chi Chiang)
dc.contributor.authorChung-Hua Chenen
dc.contributor.author陳駿華zh_TW
dc.date.accessioned2021-06-15T02:44:57Z-
dc.date.available2012-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-10
dc.identifier.citationBullard, I., Clark, W., Herendeen, R.A., 1975. The energy cost of goods and services. Energy Pol. 3, 268-278.
Boustead, I., Hancock, G.F., 1979. Handbook of Industrial Energy Analysis. Ellis Horwood Ltd., Chichester, UK.
Chu, H.W., 2007. CO2 sequestration by carbonation of alkaline solid waste. Master Thesis.
Domingo, C., Loste, E., Garcia-Carmona, J., Fraile, J., 2006. Calcite precipitation by a high-pressure CO2 carbonation route. The Journal of Supercritical Fluids 36(3), 202-215.
Eloneva, S., Teir, S., Salminen, J., Fogelholm, C.J., Zevenhoven, R. 2005. Proc. 4th Nordic Minisymp. on Carbon Dioxide Capture and storage, Espoo, Finland.
Eloneva, S., Teir, S., Salminen, J., Fogelholm, C.J., Zevenhoven, R. 2008. Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33(9), 1461-1467.
Fan, L.S., Kreischer, B.E., Tsuchiya, K. 1988. Transport Processes in Fluidized Beds.
Fan, L.S., Bavarian, F., Gorowara, R.L., Kreischer, B.E., Hydrodynamics of Gas-Liquid-Solid Fluidization Under High Gas Hold-up Conditions. Powder Technology 53, 285-293.
Fernández Bertos, M., Simons, S.J.R., Hills, C.D., Carey, P.J., 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. B112, 193-205.
Gupta, H., Fan, L.S., 2002. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind. Eng. Chem. Res. 41, 4035-4042.
Hertwich, E.G., Aaberg, M., Singh, B., Stromman, A., 2008. Life-cycle Assessment of Carbon Dioxide Capture for Enhanced Oil Recovery. Chinese Journal of Chemical Engineering 16(3), 343-353.
Huijgen, W.J.J., Comans, R.N.J., 2003. Carbon dioxide sequestration by mineral carbonation, literature review; Energy Research Centre of the Netherlands, ECN-C-03-016, Petten, Netherlands.
Huijgen, W.J.J., Witkamp, G.J., Comans, R.N.J., 2005. Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 39, 9676-9682.
Huijgen, W.J.J., Witkamp, G.J., Comans, R.N.J., 2006. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chemical Engineering Science 61(13), 4242-4251.
IEA Greenhouse Gas R&D Programme (IEA GHG). 2006. Environmental impact of solvent scrubbing of CO2. Cheltenham, UK.
Iizuka, A., Fujii, M., Yamasaki, A., Yanagisawa, Y., 2004. Development of a New CO2 Sequestration Process Utilizing the Carbonation of Waste Cement. Industrial & Engineering Chemistry Research 43(24), 7880-7887.
IPCC, 2005. Carbon Dioxide Capture and Storage, IPCC Special Report.
Kakizawa, M., Yamasaki, A., Yanagisawa, Y., 2001. A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Engergy 26(4), 341-354.
Khoo, H.H., Tan, R.B., 2006. Life cycle investigation of CO2 recovery and sequestration. Environmental science & technology 40(12), 4016-4024.
Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K., Yamada, K., 2008. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution Energy 33(5), 776-784.
Koornneef, J., Faaij, A., Turkenburg,W., 2006. Environmental Impact Assessment of Carbon Capture & Storage in the Netherlands.
Koornneef, J., Keulen T., Faaij, A., Turkenburg,W., 2008. Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2. International Journal of Greenhouse Gas Control 2, 448–467.
Lackner, K.S., Wendt, C. H., Butt, D. P., Joyce, E. L., Sharp, D. H., 1995. Carbon dioxide disposal in carbonate minerals. Energy 20, 1153-1170.
Lackner, K.S., Butt, D.P., Wendt, C.H., Goff, F., Githrie, G., 1997. Carbon dioxide disposal in mineral form, Keeping coal competitive. Los Alamos National Laboratory, LA-UR-97-2094, Los Alamos, NM, USA.
Lackner, K.S., 2002. Carbonate Chemistry for Sequestering Fossil Carbon. Annu. Rev. Energy Environ 27(1), 193-232.
Lackner, K.S., 2003. A Guide to CO2 sequestration. Science 300(13), 1677-1678.
Lee, D., 2004. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem. Eng. J. 100, 71-77.
Lekakh, S.N., Rawlins, C.H., Robertson, D.G.C., Richards, V.L., Peaslee, K.D., 2008. Kinetic of aqueous leaching and carbonization of steelmaking slag. Metall. Mater. Trans. B 39(1), 125-134.
Lekakh, S.N., Rawlins, C.H., Robertson, D.G.C., Richards, V.L., Peaslee, K.D., 2008. Investigation of two-stage aqueous reactor design for carbon dioxide sequestration using steelmaking slag. Metall. Mater. Trans. B 39B, 484-492.
Lin, T.Y., 2000. Kinetics of the Reaction of CO2 with Solid Sorbents at Low Temperatures. Master Thesis.
Marini, L., 2007, Geological sequestration of carbon dioxide: Thermodynamics, kinetics, and reaction path modeling: New York, Elsevier, Developments in Geochemistry 11, 453.
Montes-Hernandez, G., Renard, F., Geoffory, N., Charlet, L., Pironon, J., 2007. Calcite precipitation from CO2–H2O–Ca(OH)2 slurry under high pressure of CO2. Journal of Crystal Growth 308, 228–236.
Montes-Hernandez, G., Pérez-López, R., Renard, F., Nieto, J.M., Charlet, L., 2009. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater. 161, 1347-1354.
NETL, 2003. Carbon sequestration technology roadmap and program plan. U.S. DOE Office of Fossil Energy National Energy Technology Laboratory.
Nikulshina, V., Galvez, M.E., Steinfeld, A., 2007. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle. Chemical Engineering Journal 129, 75-83.
Odeh, N.A., Cockerill, T.T., 2008. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy 6(1), 367-380.
Park, A.H.A., Fan, L.S., 2004. CO2 mineral sequestration: physical activated dissolution of serpentine and pH swing process. Chem. Eng. Sci. 59(22-23), 5241-5247.
Pehnt, M., Henkel, J., 2009. Life cycle assessment of carbon dioxide capture and storage from lignite power plants. International Journal of Greenhouse Gas Control, 3(1), 49-66.
Pfeifer, C., Puchner, B., Hofbauer, H., 2007. In-situ CO2-absorption in a dual fluidized bed biomass steam gasifier to produce a hydrogen rich syngas. International Journal of Chemical Reactor Engineering 5, A9.
O’Connor, W.K., Dahlin, D.C., Nilsen, D.N., Gerdemann, S.J., Rush, G.E., Walters, R.P., Turner, P.C., 2001. Research status on the sequestration of carbon dioxide by direct aqueous mineral carbonation. 18th annual international Pittsburgh coal conference, Newcastle, Australia.
Ostergaard, K., 1968. Gas-Liquid-Particle Operations in Chemical Reaction Engineering. Advances in Chemical Engineering 7, 71-137.
Seifritz, W., 1990. CO2 disposal by means of silicates. Nature 345, 486.
Shah, Y.T., 1979. Gas-Liquid-Solid Reactor Design. McGraw-Hill.
Stumm W., 1992. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. Wiley-interscience, New York.
Uibu, M., Uus, M., Kuusik, R., 2009. CO2 mineral sequestration in oil-shale wastes from Estonian power production. Journal of Environmental Management 90(2), 1253-1260
Viebahn, P., Nitsch, J., Fischedick, M., Esken, A., Schuwer, D., Supersberger, N., Zuberbuhler, U., Edenhofer, O., 2007. Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. International Journal of Greenhouse Gas Control 1, 121-133.
Villain, G., Thiery, M., Platret, G., 2007. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cement and Concrete Research 37(8), 1182-1192.
Wang, J., Anthony, E.J., Abanades, J.C., 2003. A simulation study for fluidized bed combustion of petroleum coke with CO2 capture. In: Proceedings of FBC2003. 17th International Fluidized Bed Combustion Conference, Jacksonville, FL, USA.
X.Y. Xie, B.J. Zhong, W.B. Fu, Y. Shi, 2002. Measurement of equivalent diffusivity during the calcination of limestone. Comb. Flame 129, 351-355.
Zhuo. C.C., 1999. Absorption of CO2 by Slurries of Silicate Minerals-Dissolution of Silicate Minerals. Master Thesis.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44207-
dc.description.abstract為了提升碳酸化法封存二氧化碳之商業化之可行性,本研究將重點分作技術改良以及技術評估兩大部分。首先試圖以流體化床反應器與嘗試數種含鈣製鋼爐石作為反應進料,藉以提升濕式條件下碳酸化轉換率。再以3E(環境、經濟、工程)作為技術評估指標,對實驗室級二氧化碳封存技術進行評量。
技術面上,以低耗能及低耗材作為實驗設計理念。利用各項操作因子:反應進料、反應時間、反應溫度、二氧化碳流量以及反應器體積之改變,來討論各因子對轉化率的影響。結果顯示當轉爐石在反應時間1小時,溫度控制在60 oC,二氧化碳壓力控制在101.3 kPa,流量控制在0.1 LPM且粒徑小於44μm時,轉化率約為68%。主要影響因子為反應溫度以及反應時間,而此反應動力可藉由縮核模式與阿瑞尼士方程進行描述。
評估面上,以技術評估評量二氧化碳封存技術確認其商業化價值。以生命週期評估軟體-Umberto 5.5 作為環境衝擊工具,結合國際資料庫-Ecoinvent 2.0與本土化數據進行不同衝擊類別下量化工作。另外一方面,結合文獻資料以及實驗數據進行經濟面與工程面上實驗級評量。結果顯示,除了二氧化碳削減率未能達到績效值(85%)外,此技術無論在成本、能源消耗、產物安定性以及貯存能力上均有出色的表現。表示其為可行的二氧化碳的減量技術。
zh_TW
dc.description.abstractThe CO2 sequestration by aqueous carbonation via steel making slag at various operational conditions was investigated in this study. The operational conditions include type of steel making slag, reaction time, reaction temperature, CO2 flow rate and reactor volume. Experiments were conducted at different operational conditions to evaluate their influence on the carbonation conversion.
The results indicate that the basic oxygen slag has the highest carbonation conversion around 68% at a reaction time of one hour, operating pressure of 101.3 kPa and temperature at 60 oC. The major factors affecting the carbonation conversion are reaction time and temperature. The reaction kinetic of the carbonation conversion can be expressed by the shrinking core model and the Arrenius Equation.
The Life Cycle Assessment software, Umberto 5.5, was used to evaluate the commercial value of this CO2 sequestration technology. It was concluded that aqueous carbonation by fluidized bed reactor is outstanding on cost, energy savings, product stability and storage capacity. The CO2 sequestration by carbonation via basic oxygen furnace slag is an effective alternative in reducing CO2 emission.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:44:57Z (GMT). No. of bitstreams: 1
ntu-98-R96541206-1.pdf: 3945122 bytes, checksum: 326a2e43beb3896e0c39ef061486e015 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 I
Abstract II
中文摘要 III
Contents IV
Figure Captions VII
List of Tables X
Chapter 1 Introduction 1-1
1-1 Background 1-1
1-2 Objectives 1-4
Chapter 2 Literature Review 2-1
2-1 Suitable Feedstocks for Mineralization of Carbon Capture 2-1
2-2 Principles of mineral carbonation reaction 2-4
2-2-1 Kinetics of Calcium Leaching 2-6
2-2-2 Kinetic of Carbon Dioxide Dissolution 2-7
2-2-3 Kinetic of Aqueous Carbonation 2-8
2-3 Fluidized Bed Reactors 2-12
2-4 LCA on Carbon Sequestration 2-12
2-4-1 LCA 2-12
2-4-2 LCA of Energy System 2-14
2-4-3 LCA Software - Umberto 5.5 2-17
Chapter 3 Materials and Methods 3-1
3-1 Research Flowchart 3-1
3-2 Materials 3-2
3-2-1 Source of Agents 3-2
3-2-2 Procedure of Preparing Steelmaking Slags 3-3
3-3 Physico-Chemical Analysis 3-6
3-3-1 Scanning Electron Microscope (SEM) 3-6
3-3-2 Transmission Electron Microscope (TEM) 3-6
3-3-3 X-Ray Diffractometry (XRD) 3-6
3-3-4 Composition Analysis 3-7
3-3-5 Thermogravimetric Analysis (TGA) 3-7
3-4 Carbonation Experiment 3-9
3-4-1 Aqueous Carbonation Process by Fluidized Bed Reactor 3-9
3-5 Technical Assessment 3-13
3-5-1 LCA 3-13
3-5-2 3E Assessment 3-15
Chapter 4 Results and Discussion 4-1
4-1 Physical Characteristics and Composition of Steelmaking slag 4-1
4-1-1 Composition Analysis 4-1
4-1-2 SEM Analysis 4-3
4-2 Aqueous Carbonation Process by Fluidized Bed Reactor 4-4
4-2-1 Aqueous Carbonation 4-4
4-2-2 Effect of Reaction Time and Different Feedstock 4-5
4-2-3 Effect of Flow Rate on Carbonation 4-8
4-2-4 Effect of Reaction Temperature on Carbonation 4-9
4-2-5 Product Analyses 4-12
4-2-5-1 SEM Analyses of Carbonated Steelmaking Slags 4-12
4-2-5-2 TEM Analyses of Carbonated Steelmaking Slags 4-14
4-2-5-3 XRD Analyses of Carbonated Steelmaking Slags 4-14
4-2-6 Kinetic Modeling of Aqueous Carbonation 4-16
4-2-7 Conversion Comparison with Technical Reformation 4-18
4-3 Technical Assessment 4-21
4-3-1 Life Cycle Assessment (LCA) 4-22
4-3-1-1 Goal and Scope 4-22
4-3-1-2 Life Cycle Inventory (LCI) 4-24
4-3-1-3 Impact Assessment 4-27
4-3-2 Comprehensive Comparison 4-31
Chapter 5 Conclusions and Recommendations 5-1
5-1 Conclusions 5-1
5-2 Recommendations 5-2
References
Appendix
dc.language.isoen
dc.subject二氧化碳封存zh_TW
dc.subject濕式碳酸化zh_TW
dc.subject流體化床zh_TW
dc.subject生命週期評估zh_TW
dc.subjectfluidized bed reactoren
dc.subjectCO2 sequestrationen
dc.subjectaqueous carbonationen
dc.subjectLife Cycle Assessmenten
dc.title以流體化床進行濕式碳酸化反應之績效評量zh_TW
dc.titlePerformance Evaluation of Aqueous Carbonation by Fluidized Bed Reactoren
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張怡怡,黃金寶,顧洋,曾迪華
dc.subject.keyword二氧化碳封存,濕式碳酸化,流體化床,生命週期評估,zh_TW
dc.subject.keywordCO2 sequestration,aqueous carbonation,fluidized bed reactor,Life Cycle Assessment,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2009-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved