請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44198
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊傑 | |
dc.contributor.author | Jan-Huey Chen | en |
dc.contributor.author | 陳占慧 | zh_TW |
dc.date.accessioned | 2021-06-15T02:44:31Z | - |
dc.date.available | 2009-08-12 | |
dc.date.copyright | 2009-08-12 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-10 | |
dc.identifier.citation | 陳占慧,2005: 策略性颱風觀測—共軛模式之颱風駛流敏感向量。國立台灣大學大氣科學研究所碩士論文,79頁。
曾忠一,2006: 大氣科學中的反問題(上)(下)。國立編譯館 主編/出版,1288頁。 Aberson, S. D., and M. DeMaria, 1994: Verification of a nested barotropic hurricane track forecast model (VICBAR). Mon. Rev. Rev., 122, 2804-2815. Aberson, S. D., and J. L. Franklin, 1999: Impact on hurricane track and intensity forecast of GPS dropsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull. Amer. Meteor. Soc., 80, 421-427. Aberson, S. D., 2002: Two years of hurricane synoptic surveillance. Wea. Forecasting, 17, 1101-1110. Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 1613-1628. Aberson S. D., 2008: Large forecast degradations due to synoptic surveillance during the 2004 and 2005 hurricane seasons. Mon. Wea. Rev., 136, 3138-3150. Anwender D., M. Leutbecher, S. C. Jones and P. A. Harr, 2009: Sensitivity experiments for ensemble forecasts of the extratropical transition of Typhoon Tokage (2004). Submitted to Quart. J. Roy. Meteor. Soc. Bergot, T., 1999: Adaptive observations during FASTEX: A systematic survey of upstream flights. Quart. J. Roy. Meteor. Soc., 125, 3271–3298. Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 1748-1765. Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420-436. Buizza, R., J. Tribbia, F. Molteni, and T. Palmer, 1993: Computation of optimal unstable structures for a numerical weather prediction model. Tulles, 45A, 388-407. Buizza, R., 1994: Localization of optimal perturbations using a projection operator. Quart. J. Roy.Meteor. Soc., 120, 1647-1681. Buizza, R. and A. Montani, 1999: Targeted observations using singular vectors. J. Atmos. Sci., 56, 2965-2985. Buizza, R., C. Cardinali, G. Kelly and J.-N. Thépaut, 2007: The value of observations. II: The value of observations located in singular-vector-based target areas. Quart. J. Roy.Meteor. Soc., 133, 1817-1832. Burpee, R. W., J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D. Aberson, 1996: The impact of omega dropsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925-933. Cardinali, C., R. Buizza, G. Kelly, M. Shapiro and J.-N. Thépaut, 2007: The value of observations. III: Influence of weather regimes on targeting. Quart. J. Roy.Meteor. Soc., 133, 1833-1842. Chan, J. C.-L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationship. Mon. Wea. Rev., 110, 354–1376. Chan, J. C. L, and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 1257-1265. Chen, J.-H., M. S. Peng, C. A. Reynolds, and C.-C. Wu, 2009a: Interpretation of tropical cyclone forecast sensitivity from the singular vector perspective. Submitted to J. Atmos. Sci. (accepted) Chen, S.-G., C.-C. Wu, J.-H. Chen and K.-H. Chou, 2009b: The case study on validation and interpretation of ADSSV as targeted observation guidance. To be submitted to Mon. Wea. Rev. Chou, K.-H., and C.-C. Wu, 2008: Development of the typhoon initialization in a mesoscale model – Combination of the bogused vortex with the dropwindsonde data in DOTSTAR. Mon. Wea. Rev. 136, 865-879. Emanuel, K., and R. Langland, 1998: FASTEX Adaptive Observations Workshop. Bull. Amer. Meteor. Soc., 79, 1915–1919. Ehrendorfer, M., and R. M. Errico, 1995: Mesoscale predictability and the spectrum of optimal perturbations. J. Atmos. Sci., 52, 3475-3500. Elsberry, R. L., 1986: Some issues related to the theory of tropical cyclone motion. Tech. Rep. NPS 63-86-005, Naval Postgraduate School, Monterey, CA, 23 pp. Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pacific J. Atmos. Sci., 44, 209-231. Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 2577-2591. Farrell, B. F., 1990: Small error dynamics and the predictability of atmospheric flows. J. Atmos. Sci., 47, 1193-1206. Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975-990. Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Science Paper 232, Colorado State University, Fort Collins, CO, 121 pp. Gelaro, R., R. Langland, G. D. Rohaly, and T. E. Rosmond, 1999: An assessment of the singular vector approach to targeted observing using the FASTEX data set. Quart. J. Roy. Meteor. Soc., 125, 3299-3328. Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper tropospheric troughs. Mon. Wea. Rev., 129, 2570-2584. Joly, A., D. Jorgensen, M. A. Shapiro, A. Thorpe, P. Bessemoulin, K. A. Browning, J.-P. Cammas, J.-P. Chalon, S. A. Clough, K. A. Emanuel, L. Eymard, R. Gall, P. H. Hildebrand, R. H. Langland, Y. Lemaître, P. Lynch, J. A. Moore, P. O. G. Persson, C. Snyder and R. M. Wakimoto, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific Objectives and Experimental Design. Bull. Amer. Meteor. Soc., 78, 1917–1940. Jones, S. C., P. A. Harr, J. Abraham, L. F. Bosart, P. J. Bowyer, J. L. Evans, D. E. Hanley, B. N. Hanstrum, R. E. Hart, F. Lalaurette,M. R. Sinclair, R. K. Smith, and C. Thorncroft, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 16–56. Kelly, G., J.-N. Thépaut, R. Buizza, and C. Cardinali, 2007: The value of observations. I: Data denial experiments for the Atlantic and the Pacific. Quart. J. Roy.Meteor. Soc., 133, 1803-1815. Kim, H. M., and B.-J. Jung, 2009a: Singular vector structure and evolution of a recurving tropical cyclone. Mon. Wea. Rev., 137, 505-524. Kim, H. M., and B.-J. Jung, 2009b: Influence of moist physics and norms on singular vectors for a tropical cyclone. Mon. Wea. Rev., 137, 525-543. Krishnamurti, T. N., 1961: The subtropical jet stream of the winter. J. Atmos. Sci., 18, 172-191. Langland, R. H., R. Gelaro, G. D. Rohaly, and M. A. Shapiro, 1999: Targeted observations in FASTEX: Adjoint-based targeting procedures and data impact experiments in IOPs-17 and 18. Quart. J. Roy. Meteor. Soc., 125, 3241-3270.21. Langland, R.H., and Baker, N.L., 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation system. Tellus, 56A, 189-201. Leutbecher, M., 2003: A reduced rank estimate of forecast error variance changes due to intermittent modifications of the observing network. J. Atmos. Sci., 60, 729-742. Lewis, J. M., 2005: Roots of Ensemble Forecasting. Mon. Wea. Rev., 133, 1865–1885. Lord, S. J., 1996: The impact on synoptic-scale forecasts over the United States of dropwindsonde observations taken in the northeast Pacific. Preprints, 11 th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 70-71. Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321-333. Mahfouf, J.-F. and F. Rabier, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part II: Experimental results with improved physics. Quart. J. Roy. Meteor. Soc., 126, 1171-1190. Majumdar, S. J., C. H. Bishop, and B. J. Etherton, and Z. Toth, 2002a: Adaptive sampling with the ensemble transform Kalman filter. Part II: Field program implementation. Mon. Wea. Rev., 130, 1356–1369. Majumdar, S. J., C. H. Bishop, R. Buizza, and R. Gelaro, 2002b: A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular-vector guidance. Quart. J. Roy. Meteor. Soc., 128, 2527–2549. Majumdar, S. J., S.D. Aberson, C. H. Bishop, R. Buizza, M. S. Peng and C. A. Reynolds, 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134, 2354-2372. McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of nondeveloping versus developing systems. J. Atmos. Sci., 38, 1132-1151. Molinari, J., P. Dodge, D. Vallaro, K. L. Corbosiero, and F. Marks, 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341–354. Molteni, F., and T. N. Palmer, 1993: Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269-298. Molteni, F., R. Buizza, T.N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Meteorology and validation. Quart. J. Roy. Meteor. Soc., 122, 73-120. Montani, A., Thorpe A. J., Buizza R., and Unden P., 1999: Forecast skill of the ECMWF model using targeted observations during FASTEX. Quart. J. Roy. Meteor. Soc., 125, 3219–3240. Palmer, T. N., R. Gelaro, J. Barkmeijer and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 58, 210-234. Peng, M. S., and C. A. Reynolds, 2005: Double trouble for typhoon forecasters. Geophys. Res. Lett., 32, L02810, doi:10.1029/2004GL021680. Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 2508-2528. Peng, M. S., R. N. Maue, C. A. Reynolds, and R. H. Langland, 2007: Hurricanes Ivan, Jeanne, Karl (2004) and mid-latitude trough interations. Meteorol. Atmos. Phys., 97, 221-237. Reynolds, C. A., M. S. Peng, S. J. Majumdar, S. D. Aberson, C. H. Bishop, and R. Buizza 2007: Interpretation of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev. 135, 4006-4029. Reynolds, C. A., M. S. Peng, and J.-H. Chen, 2009: Recurving tropical cyclones: singular vector sensitivity and downstream impact. Mon. Wea. Rev. 137, 1320-1337. Rosmond, T. E., 1997: A technical description of the NRL adjoint model system, NRL/MR/7532/97/7230, Naval Research Laboratory, Monterey, CA, 93943, 62 pp. Toth, Z. and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330. Tuleya, R. E., and S. J. Lord, 1997: The impact of dropwindsonde data on GFDL hurricane model forecasts using global analysis. Wea. Forecasting., 12, 307-323. Velden, C.S., and L.M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244-253. Wang, Y., and C.-C. Wu, 2004: Current understanding of tropicalcyclone structure and intensity changes – a review. Meteorol. Atmos. Phy., 87, 257–278. Wei, M. and Z. Toth, R.Wobus, Y.Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 62-79. Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp. Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 62-76. Wu, C.-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 69-92. Wu, C.-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93-109. Wu, C.-C., T.-S. Huang, W.-P. Huang, and K.-H. Chou, 2003: A new ook at the binary interaction: Potential vorticity diagnosis of he unusual southward movement of Typhoon Bopha (2000) nd its interaction with Typhoon Saomai (2000). Mon. Wea. Rev., 131, 1289–1300. Wu, C.-C., P.-H. Lin, S. D. Aberson, T.-C. Yeh, W.-P. Huang, J.-S. Hong, G.-C. Lu, K.-C. Hsu, I-I Lin, K.-H. Chou, P.-L. Lin, and C.-H. Liu, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An Overview. Bull. Amer. Meteor. Soc., 86, 787–790. Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007a: Targeted observations of tropical cyclones based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 2611-2626. Wu, C.-C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007b: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 1157-1176. Wu, C.-C., S.-G. Chen, J.-H. Chen, K.-H. Chou and P.-H. Lin, 2009a: Interaction of Typhoon Shanshan (2006) with the mid-latitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives. Mon. Wea. Rev., 137, 852-862. Wu, C.-C., J.-H. Chen, S. J. Majumdar, M. S. Peng, C. A. Reynolds, S. D. Aberson, R. Buizza, M. Yamaguchi, S.-G. Chen, T. Nakazawa, and K.-H. Chou, 2009b: Intercomparison of targeted observation guidance for tropical cyclones in the western North Pacific. Mon. Wea. Rev., 137, 2471-2492. Wu, C.-C. and co-authors, 2009c: Targeted observations and its impact in DOTSTAR under T-PARC 2008. (personal communication) Wu, C.-C., G.-Y. Lien and F. Zhang, 2009d: Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter. (personal communication) Yamaguchi M., T. Iriguchi, T. Nakazawa, and C.-C. Wu, 2009: An Observing system experiment for Typhoon Conson (2004) using a singular vector method and DOTSTAR data. Mon. Wea. Rev. (in press) Yang, C.-C., C.-C. Wu, K.-H. Chou, and C.-Y. Lee, 2008: Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev., 136, 4593-4611. Zou, X., F. Vandenberghe, M. Pondeca, and Y.-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Technical Note, NCAR/TN-435+STR, 110pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307-3000.] | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44198 | - |
dc.description.abstract | 由颱風觀測計畫所衍生之策略性(自適性)颱風觀測,除能在實際應用上提供設定觀測策略之參考外,亦可作為分析與探討颱風動力問題上的有效工具。本研究以2006年發生於西北太平洋的19個熱帶氣旋為背景,以策略性颱風觀測理論之一的美國海軍全球預報模式奇異向量,深入探討熱帶氣旋與其周圍大尺度系統間的動力關係,結果顯示奇異向量敏感結果可分為兩大類,其最大敏感值分別出現在「熱帶氣旋之入流區」與「相對於氣旋中心之徑向風速極小的區域」,由合成分析發現,此兩大分類在不同季節以及不同熱帶氣旋生命期會顯現不同特徵,且與熱帶氣旋及其周圍大尺度系統之相對配置息息相關,其中「最大敏感值出現在徑向風速較弱區域」的結果在之前關於熱帶氣旋與奇異向量的研究中從未被提及,是一相當有趣與創新的發現,顯現出由於氣旋本身環流以及其他大尺度系統(例如副熱帶高壓系統與中緯度槽線系統)之環流相互作用下產生的合流區域在颱風移動預報上的敏感性。另外,透過奇異向量在垂直方向上的分析,可獲得動能與位能之結構分佈在初始與終端時間的變化,而對不同分類間的差異亦有詳細探討。
除奇異向量在熱帶氣旋移動上的動力探討,本研究亦統合比較目前應用於西北太平洋上幾種主要的熱帶氣旋敏感結果,在國際間的學術合作下,獲得6種不同模式同時針對2006年西北太平洋的19個熱帶氣旋,以「奇異向量」、「颱風駛流敏感共軛向量」、「系集平均深層風變異」與「系集卡曼濾波器」4種理論計算出之6種不同的敏感性結果。藉由定量上的統計方法比較此6種結果在綜觀尺度與颱風尺度上的相似程度,發現以不同模式計算之「奇異向量」彼此間有最高的相似性,而「系集平均風變異」與其他敏感性結果的比較則顯現低相似性,另外「颱風駛流敏感共軛向量」與「系集平均深層風變異」常在鄰近熱帶氣旋的區域出現敏感性,因而兩者在統計上顯現出高相似度。另外,研究中亦針對3個分別主要受到「副熱帶高壓系統」、「中緯度槽線系統」與「副熱帶噴流系統」影響之個案進行分析。整體結果顯示,由共軛模式技術計算之敏感性結果與可能影響颱風移動或發展之動力特徵的吻合度較高,而以系集技術計算之敏感結果較不容易掌握可能影響颱風之大尺度動力特徵。 上述研究結果除可以提供未來觀測計畫與颱風預報參考之外,同時亦藉由對與颱風基礎動力有關之特徵的瞭解,進一步增加模式對於颱風預報能力的掌握,為策略性颱風觀測理論的額外貢獻。 | zh_TW |
dc.description.abstract | Targeted (adaptive) observation of tropical cyclones can not only provide the reference to the operational observing missions/experiments but be a useful tool to study the typhoon dynamics. In this study, the leading Singular Vectors (SVs) constructed by the Navy Operational Global Atmospheric Prediction System (NOGAPS) forecast and adjoint systems are used to examine and classify the dynamic relationship between tropical cyclones and synoptic-scale environmental features that influence their evolution through the composite techniques. The NOGAPS initial SVs show several different patterns that highlight the relationship between the TC forecast sensitivity and the environment during the western North Pacific typhoon season in 2006. In addition to the relation of the SV maximum to the inward flow region of the TC, there are three patterns identified where the local SV maxima collocate with low-radial-wind-speed regions. These regions are likely caused by the confluence of the flow associated with the TC itself and the flow from other synoptic systems, such as the subtropical high and the mid-latitude jet. This is the new finding beyond the previous NOGAPS SV results on TCs. The sub-seasonal variations of these patterns corresponding to the dynamic characteristics are discussed. The SV total energy vertical structures for the different composites are used to demonstrate the contributions from kinetic and potential energy components of different vertical levels at initial and final times.
Besides the above dynamical analysis, this study also compares six different guidance products for targeted observations over the Northwest Pacific in 2006, and highlights the unique dynamical features affecting the TC tracks in this basin. The six products include 3 types of guidance based on total-energy singular vectors (TESVs) from different global models, the ensemble transform Kalman filter (ETKF) based on a multi-model ensemble, the deep-layer mean (DLM) wind variance, and the adjoint-derived sensitivity steering vector (ADSSV). The similarities among the six products are evaluated using two objective statistical techniques to show the diversity of the sensitivity regions in large, synoptic-scale domains, and smaller domains local to the TC. It is shown that the three TESVs are relatively similar to one another in both the large and the small domains while the comparisons of the DLM wind variance to other methods show rather low similarities. The ETKF and the ADSSV usually show high similarity because their optimal sensitivity usually lies close to the TC. The ADSSV, relative to the ETKF, reveals more similar sensitivity patterns to those associated with TESVs. Three special cases are also selected to highlight the similarities and differences between the six guidance products and to interpret the dynamical systems affecting the TC motion in the North western Pacific. The adjoint methods are found to be more capable of capturing the signal of the dynamic system that may affect the TC movement or evolution than the ensemble methods. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:44:31Z (GMT). No. of bitstreams: 1 ntu-98-D94229003-1.pdf: 3008995 bytes, checksum: 602aad70d9c016442e0146ba771eb1dc (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要 I
Abstract III 致謝 V 目錄 VII 圖表目錄 IX 第一章 前言 1 1.1 研究背景回顧 2 1.1.1 策略性(自適性)颱風觀測之發展與演變 2 1.1.2 策略性颱風觀測理論之應用 6 1.2 研究動機與目的 9 第二章 研究方法 11 2.1 各種策略性颱風觀測理論介紹 11 2.1.1奇異向量(Singular Vector, SV) 11 2.1.2 颱風駛流敏感共軛向量(Adjoint-derived Sensitivity Steering Vector, ADSSV) 14 2.1.3 系集深層平均風變異(Ensemble Deep-Layer Mean Variance) 15 2.1.4 系集轉換卡曼濾波器(Ensemble-Transform Kalman-Filter, ETKF) 16 2.2 使用資料介紹 18 第三章 研究結果 I — 熱帶氣旋預報敏感特徵 21 3.1 2006年颱風季之綜觀環境分析 22 3.2 NOGAPS SV之合成分析 23 3.2.1 敏感區域位於熱帶氣旋入流區(Inward flow) 24 3.2.2 敏感區域位於徑向風速極小的區域(low-radial-speed wind) 26 3.2.3 熱帶氣旋強度與各分類間之關係 29 3.3 各分類奇異向量之垂直變化 30 3.4 小結與討論 32 第四章 研究結果 II — 策略性颱風觀測敏感結果之比較 35 4.1 簡介各敏感性結果與其計算模式之設定 35 4.2 相同敏感位置之統計比較 37 4.2.1 綜觀尺度 38 4.2.2 颱風尺度 40 4.2.3 改變門檻值之比較 41 4.3 敏感位置相鄰程度之比較 42 4.3.1綜觀尺度 43 4.3.2颱風尺度 44 4.4 特殊個案之探討 45 4.4.1 副熱帶高壓影響案例 45 4.4.2 中緯度槽線影響案例 46 4.4.3 副熱帶噴流影響案例 47 4.5 小結與討論 48 第五章 總結 53 5.1 結語 53 5.2 未來展望 54 附錄 敏感位置相鄰程度比較中區域大小之選取 57 參考文獻 59 表 69 圖 79 | |
dc.language.iso | zh-TW | |
dc.title | 策略性颱風觀測理論之動力分析與比較 | zh_TW |
dc.title | Dynamic analysis and inter-comparison of the targeted observations for tropical cyclones | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林博雄,曾忠一,彭順台,黃清勇,楊舒芝,葉天降 | |
dc.subject.keyword | 策略性颱風觀測,奇異向量,颱風動力,共軛模式,系集技術,敏感性分析, | zh_TW |
dc.subject.keyword | targeted (adaptive) observation,singular vector,typhoon dynamics,adjoint model,ensemble method,sensitivity analysis, | en |
dc.relation.page | 110 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-10 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。