請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44190
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉超雄(Chau-Shioung Yeh) | |
dc.contributor.author | Pin-Han Kuo | en |
dc.contributor.author | 郭蘋漢 | zh_TW |
dc.date.accessioned | 2021-06-15T02:44:07Z | - |
dc.date.available | 2014-08-14 | |
dc.date.copyright | 2009-08-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-10 | |
dc.identifier.citation | [1] Alfred Smee , “Elements of electro-biology”, Electro-Aisthenics, 8-16, 1849.
[2] http://www.invent.org/2008induction/1_3_08_induction_chapin.asp. [3] Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry, and David L. Carroll, “Roles of donor and acceptor nano domains in 6% efficient thermally annealed polymer photovoltaics”, Appl. Phys. Lett., 90, 163511, 2007. [4] Jin Young Kim, Kwanghee Lee, Nelson E. Coates, Daniel Moses, Thuc-Quyen Nguyen, Mark Dante, Alan J. Heeger,“Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing”, Science, Vol. 317. No.5835, 2007. [5] O. Stenzel, A. Stendal, K. Voigtsberger, C. von Borczyskowski,“Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporationof metal clusters”, Solar Energy Materials and Solar Cells, 37, 337-348,1995. [6] M. Westphalen, U. Kreibig, J. Rostalski, H. LuKth, D. Meissner ,“Metal cluster enhanceorganic solar cells”, Solar Energy Materials and Solar Cells, 61, 97-105, 2000. [7] D. M. Schaadt, B. Feng, and E. T. Yu,“Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles”, Appl. Phys. Lett. , 86, 063106, 2005. [8] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu,“Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles”, Appl. Phys. Lett., 89, 093103, 2006. [9] Hong-Ju Park, Doojin Vak, Yong-Young Noh, Bogyu Lim, and Dong-Yu Kim, “Surface plasmon enhanced photoluminescence of conjugated polymers”, Appl. Phys. Lett., 90, 161107, 2007. [10] Anthony J. Morfa, Kathy L. Rowlen, Thomas H. Reilly III, Manuel J. Romero, and Jao van de Lagemaat,“Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics”, Appl. Phys. Lett., 92, 013504, 2008. [11] 張正華、李陵嵐、葉楚平、楊平華,“有機與塑膠太陽能電池”, 五南圖書出版 [12] Jean-Michel Nunzi, “Organic photovoltaic materials and devices”, C. R. Physique, 523-542, 2002. [13] Jenny Nelson, 'The Physics of Solar Cells,' Chapter 1, 2003 [14] 葛祖榮,陳方中,“有機高分子太陽能電池發展現況”,奈米通訊第十四卷, 2007. [15] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48, 183,1986. [16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl,“Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”, Science 258, 1474, 1992. [17] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells”, Adv. Funct. Mater. 13, 85, 2003. [18] D. Chirvase, Z. Chiguvare, M.Knipper, J. Parisi, V. Dyakonov,and J. C. Hummelen, “Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells”, Appl. Phys. Lett, 93, 3376, 2003. [19] William L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface Plasmon subwavelength optics' , NATURE 424, 824-830, 2003. [20] 吳民耀、劉威志“表面電漿子理論與模擬”,物理,第二十八卷第二期,486-493,2006. [21] 邱國斌、蔡定平,“金屬表面電漿簡介”,物理, 第二十八卷第二期, 472-485, 2006. [22] 邱國斌、蔡定平,“左手材料奈米平板的表面電漿量子簡介”,物理,第二十五卷第三期,373-382,2003. [23] A. V. Zayats, and Smolyaninov, II, 'Near-field photonics: surface Plasmon polaritons and localized surface plasmons', J. Opt. A-Pure Appl. Opt. 5, S16-S50, 2003. [24] Christian Dahmen, Gero von Plessen, “Optical Effects of Metallic Nanoparticles”, Aust. J. Chem., 60, 447–456, 2007. [25] K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz,“The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment ”, J. Phys. Chem. B, 107, 668-677, 2003. [26] LB Scaffardi, N Pellegri, O Sanctics, JO Tocho,“Sizing gold nanoparticles by optical extinction spectroscopy”, Nanotechnology 16, 158-163, 2005. [27] C Sönnichsen, T Franzl, T Wilk, G von Plessen, J Feldmann, “Plasmon resonances in large noble-metal clusters”, New J.Phys., Vol. 4, 93, 2002. [28] E. T. Yu, D. Derkacs, S. H. Lim, P. Matheu, and D. M. Schaadt,“Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices”, Proc. of SPIE Vol. 7033. [29] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, J. Chem. Phys. 116, 6755, 2002. [30] Jack J. Mock, David R. Smith, Sheldon Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles”, Nono Letters, Vol. 3, No. 4, 485-491, 2003. [31] Eliza Hutter, Janos H. Fendler,“Exploitation of Localized Surface Plasmon Resonance”, Adv. Mat., 16, No19, 2004. [32] K.-H.Su, Q.-H.Wei, X.Zhang,“Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles”, Nono Letters, Vol. 3, No.8, 1087-1090, 2003. [33] ASTM G 173-03, 'Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface', ASTM International, 2003. [34] Marisol Reyes-Reyes, Kyungkon Kim, and David L. Carroll,“High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbony-propyl-1-phenyl-(6,6)C61 blends”, Appl. Phys. Lett., 87, 083506, 2005. [35] Wanli Ma, Cuiying Yang, Xiong Gong, Kwanghee Lee, and Alan J. Heeger,“Thermal stable, Efficient Polymer Solar Cells with Nanoscale control of the Interpenetrating Network Morphology”, Adv. Funct. Mater., 15, 1617-1622, 2005. [36] Gang Li, Vishal Shrotriya, Jinsong Huang, Yan Yao, Tommoriarty, Keith Emery and Yang Yang,“High-efficiency solution processable polymer photovoltaic cells by self organization of polymer blends ”, nature materials, VOL 4 , 2005. [37] http://www.aldebaran.cz/bulletin/2004_09/structure_.gif [38] http://www.snptaiwan.com/ [39] http://nems.ntu.edu.tw/NEMS-2008/index.php [40] http://www.sts-elionix.com/content/view/20/26/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44190 | - |
dc.description.abstract | 本篇論文是以嘗試製作具奈米尺度之結構應用於有機太陽能電池元件中,並藉由模擬進一步探討金屬奈米結構之功用包括表面電漿子效應和光散射效應,期待對有機太陽能電池之光轉電效率能有提升之功效。
理論方面,藉由有限時域差分法計算電磁場分布及以數學軟體作資料分析進一步驗證奈米結構對有機太陽能電池效率提升之影響。例如探討不同金屬材質、大小、形狀、週期對有機太陽能電池之主動層穿透率和局域強度的變化關係。藉此設計出數種有機太陽能電池元件,確認其對有機太陽能轉換效率能否有提升之可行性。 實驗方面,主要製作三種有機太陽能電池元件,第一種為藉由化學合成之金奈米粒子加入有機太陽電池中,第二、三種則是利用電子束微影技術製作包括圓形,三角形,正方型之二維金屬奈米陣列及不同週期之一維金屬光柵於有機太陽能電池之ITO電極上,期待對有機太陽能電池效率能有提升作用。並藉由量測有機太陽能電池元件之電壓與電流曲線和光電流來探討金屬結構對效率的影響。另外,利用奈米壓印和蝕刻方式製作具週期性奈米排列之主動層結構。 最後,提出一個新的有機太陽能電池元件結構,希望藉由金屬奈米結構控制光在主動層的分佈狀況,並搭配吸光材料的位置配置關係,使得光的吸收能達到一個極值,使效率達到最佳化的結果。 | zh_TW |
dc.description.abstract | We attempted to manufacture nano-scale structures which were applied in the organic solar cell in this thesis, and further we used the simulation to discuss the functions of the metallic nanostructures as surface plasmon polariton (SPP) effect and the light scattering effect. It was anticipated to utilize the enhancement of power conversion efficiency in organic solar cell.
In the theoretical part, we used finite difference time domain (FDTD) to calculate the electromagnetic fields and data analysis by using MATLAB or Sigmaplot, and then confirmed the influence of the organic solar cell efficiency by metallic nanostructures. For example, we discussed different parameter as metal materials, sizes, shapes, periods to probe into transmission and localized intensity in active layer of organic solar cell. Further we designed several kinds of organic solar cell device to confirm whether it is feasible to increase power conversion efficiency or not. In the experimental part, we mainly fabricated three kinds of polymer solar cell device. The first kind is that incorporating gold nanoparticles which generated by chemical synthesis to the organic solar cell. The second, third kind of the device thatusing e-beam lithography to manufacture different shapes of nanostructure as circle, triangle and square arrays and different periodic gold grating on ITO electrode. And we measured I-V curve and IPCE to prove efficiency enhancement of organic solar cell. Besides, we tried to fabricate active layer of polymer solar cells with periodic nanostructures by nanoimprint and etching. Finally, we brought up a new organic solar cell with double nanostructures. It was expected to dominate incident light distribution of active layer via metallic nanostructure which matched main light-absorption polymer material. It will enhance light absorption heavily in active layer resulting in power conversion efficiency reach optimum value. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:44:07Z (GMT). No. of bitstreams: 1 ntu-98-R96543043-1.pdf: 6529811 bytes, checksum: b7745482e490df85efb44eae6919ca07 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 謝誌………………………………………………………I
中文摘要…………………………………………………II Abstract…………………………………………………III Table of Contents ………………………………………V List of Figures………………………………………VIII List of Tables…………………………………………XIX Chapter 1 Introduction……………………………1 1.1 Preface……………………………………………1 1.2 Motivation ………………………………………5 1.3 Thesis organization…………………………10 Chapter 2 Theory…………………………………11 2.1 Physics of organic photovoltaic cells…11 2.1.1 The photovoltaic effect…………………11 2.1.2 Characteristics of organic solar cells…15 2.1.3 Equivalent circuit……………………………17 2.1.4 Structures of organic solar cells………19 2.1.5 Materials of organic solar cells………21 2.1.6 Work principle of organic solar cells…22 2.1.7 Interface of electrode and semiconductor…24 2.2 Surface plasmon polariton………………………26 2.2.1 Introduction to surface plasmon polariton…26 2.2.2 Excite surface plasmon polariton……………30 2.2.3 Influence factors of surface plasmon polarition…37 Chapter 3 Simulation and Analysis…………………44 3.1 preface………………………………………44 3.1.1 Organic solar cell with metallic nanoparticles…45 3.1.2 Organic solar cell with two-dimension periodic metallic nanostructure……47 3.1.3 Organic solar cell with one-dimension periodic metallic nanostructure………59 Chapter 4 Experiment…………………62 4.1 Preface……………………………62 4.2 Materials of fabricating organic solar cell…64 4.3 Process of experiment…………………………66 4.3.1 Organic solar cell with metallic nanoparticles…68 4.3.2 Organic solar cell with two-dimension periodic metallic nanostructure……75 4.3.3 Organic solar cell with one-dimension periodic metallic nanostructure……82 4.3.4 P3HT layer with periodic nanostructure………85 4.3.4.1 P3HT layer with periodic nanostructure by nanoimprint…………………86 4.3.4.2 P3HT layer with periodic nanostructure by etching………………90 Chapter 5 Results and Discussion……………95 5.1 Measurement setup…………95 5.2 Measurement result………………………96 5.2.1 Organic solar cell with gold nanoparticles……101 5.2.2 Organic solar cell with two-dimension metal array…103 5.2.3 Organic solar cell with one-dimension array………106 Chapter 6 Conclusion and Future work………………113 6.1 Conclusion…………………………………………113 6.2 Future work…………………………………………115 Appendix A…………………………………………………118 Reference…………………………………………………119 | |
dc.language.iso | en | |
dc.title | 以奈米結構提升有機太陽能電池效率之模擬與實驗 | zh_TW |
dc.title | Simulation and Experiment of Organic solar cell Efficiency Enhancement by Nanostructures | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李世光(Chin-Kung Lee) | |
dc.contributor.oralexamcommittee | 管傑雄,高甫仁,葉吉田 | |
dc.subject.keyword | 有機太陽能電池,奈米結構,表面電漿子,光散射, | zh_TW |
dc.subject.keyword | organic solar cell,nanostructure,surface plasmon,light scattering, | en |
dc.relation.page | 121 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 6.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。