請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44170
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王富正 | |
dc.contributor.author | Ming-Cheng Chou | en |
dc.contributor.author | 周銘城 | zh_TW |
dc.date.accessioned | 2021-06-15T02:43:09Z | - |
dc.date.available | 2011-08-14 | |
dc.date.copyright | 2009-08-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-10 | |
dc.identifier.citation | [1] Bunchi, F.N. and S. Srinivasan, “Operation Proton Exchange Membrane Fuel Cells without External Humidification of the Reactant Gases,” J. Electronchem. Soc., Vol. 144, No. 8, pp. 2767-2772, Aug. 1997.
[2] Su, A., C.C. Sun, F.B. Weng, and Y.M. Chen, “Experimental Investigation of the Performance of a Signal Proton Exchange Membrane Fuel Cell Dry Fuel,” Experimental Heat Transfer, Taylor & Francis, pp. 97-109, 2003. [3] Amirinejad, M., S. Rowshanzamir, and M.H. Eikani, “Effects of Operating Parameters on Performance of a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 161: pp. 872-875 , 2006. [4] Bernardi, D.M. and M.W. Verbrugge, “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,” AiChE Journal, Vol. 137, No. 8, pp. 1151-1163, 1991. [5] Ceraolo, M., C. Miulli, and A. Pozio, “Modelling Static and Dynamic Behaviour of Proton Exchange Membrane Fuel Cells on the Basis of Electro-Chemical Description,” Journal of Power Sources, 113(1): pp. 131-144, 2003. [6] Baschuk, J.J. and X. Li, “A General Formulation for a Mathematical PEM Fuel Cell Model,” Journal of Power Sources, Vol.142, pp. 134-153, 2004. [7] Friede, W., “Mathematical Model and Characterization of the Transient Behavior of a PEM Fuel Cell,” IEEE Transactions on Power Electronics, Vol. 19, No.5, pp. 1234-1241, September 2004. [8] Pukrushpan, J.T. and H. Peng, et al., “Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 126(1): 14-25, 2004. [9] Methekar, R. N., V. Prasad, et al., “Dynamic Analysis and Linear Control Strategies for Proton Exchange Membrane Fuel Cell Using a Distributed Parameter Model,” Journal of Power Sources, 165(1): pp. 152-170, 2007. [10] Wang, F.C., Y.P. Yang, et al., “System Identification and Robust Control of a Portable Proton Exchange Membrane Fuel-Cell System,” Journal of Power Sources, 164(2): pp. 704-712, 2007. [11] Pukrushpan, J.T., H. Peng, and A.G. Stefanopoulou, “Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model,” 2002 ASME International Mechanical Engineering Congress & Exposition, 17-22, November 2002. [12] Rodatz, P., G. Paganelli, and L. Guzzella, “Optimizing Air Supply Control of a PEM Fuel Cell System,” American Control Conference, Vol. 3, pp. 2043-2048, 4-6 June 2003. [13] Sedghisigarchi, K. and A. Feliachi, “H-Infinity Controller for Solid Oxide Fuel Cells,” System Theory, 2003. Proceedings of the 35th Southeastern Symposium on, pp. 464-467, 16-18 March 2003. [14] Tekin, M., D. Hissel, et al., “Energy Consumption Reduction of a PEM Fuel Cell Motor-Compressor Group Thanks to Efficient Control Laws,” Journal of Power Sources, 156(1): 57-63, 2006. [15] Woo, C.H. and J. B. Benziger, “PEM Fuel Cell Current Regulation by Fuel Feed Control,” Chemical Engineering Science, 62(4): 957-968, 2007. [16] Wang, F.C., et al., “Proton Exchange Membrane Fuel Cell System Identification and Control - Part II: H-infinity Based Robust Control,” in Proceedings of 4th International ASME Conference on Fuel Cell Science, Engineering and Technology, 2006. [17] Yang, Y.P., F.C. Wang, et al., “Low Power Proton Exchange Membrane Fuel Cell System Identification and Adaptive Control,” Journal of Power Sources, 164(2): 761-771, 2007. [18] Vega-Leal, A.P., et al., “Design of control systems for portable PEM fuel cells,” Journal of Power Sources, 169(1): p. 194-197, 2007. [19] Wang, F.C., et al., “Multivariable robust control of a proton exchange membrane fuel cell system,” Journal of Power Sources, 177(2): p. 393-403, 2008. [20] Wang, F.C. and H.T. Chen, “Design and Implementation of Fixed-Order Robust Controllers for a Proton Exchange Membrane Fuel Cell System,” International Journal of Hydrogen Energy, Vol. 34, No.6, pp. 2705–2717, March 2009. [21] 黃鎮江編著,燃料電池,修訂二版,全華圖書,台北市,2007。 [22] 溫武義編譯,燃料電池技術,全華圖書,台北市,2004。 [23] Brian C., Introduction to fuel cells and hydrogen technology, IEEE Proc, 205-16, 2002. [24] Kirubakaran, A., et al., “A review on fuel cell technologies and power electronic interface,” Renewable and Sustainable Energy Reviews, 2009. [25] Larmine, J. and A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, 2003. [26] World Fuel cell council, May 22, 2009: www.fuelcellworld.org. [27] Global Ticona Photo Database, July 14, 2009: www.ticona-photos.com. [28] Mehta, V. and J.S. Cooper, “Review and Analysis of PEM Fuel Cell Design and Manufacturing,” J. Power Sources, 114(1), pp. 32–53, 2003. [29] Tang, H.L., M. Pan, F. Wang, “A Mechanical Durability Comparison of Various Perfluocarbon Proton Exchange Membranes,” Journal of Applied Polymer Science, Vol. 109, 2671–2678, 2008. [30] S.J. Lee, S. Mukerjee, E.A. Ticianelli and J. McBreen, “Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells,” Electrochim. Acta 44, pp. 3283–3293, 1999. [31] Clindrella, L., et al., “Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells – A Review,” Journal of Power Sources, 2009. [32] 趙清風編譯,使用MATLAB控制之系統識別,全華圖書,台北市,2001。 [33] Ljung, L., System Identification Theory for the User, 2nd ed., Prentice Hall PTR, 1999. [34] Van Overschee, P. and B. De Moor, “Subspace Algorithms for the Stochastic Identification Problem,” 30th IEEE Conference on Decision and Control, pp. 1321-1326, 1991. [35] Van Overschee, P. and B. De Moor, “N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems,” Automatica, 30(1): p. 75-93, 1994. [36] 黃志偉,系統識別和 強韌控制在質子交換膜燃料電池上的應用,國立台灣大學機械工程研究所碩士論文,2006年。 [37] 陳炫綜,多變數強韌控制理論在質子交換膜燃料電池上的應用,國立台灣大學機械工程研究所博士論文,2009。 [38] Mocoteguy, P., et al., “Monodimensional Modeling and Experimental Study of the Dynamic Behavior of Proton Exchange Membrane Fuel Cell Stack Operating in Dead-End Mode,” Journal of Power Sources, 167(2): p. 349-357, 2007. [39] Doyle, J.C., B.A. Francis, and A.R. Tannenbaum, Feedback Control Theory, 1992, New York. [40] Glover, K. and D.C. McFarlane, Robust Controller Design Using Normalized Coprime Factor Plant Descriptions, Springer-Verlag New York, Inc. 217, 1989. [41] Georgiou, T.T. and M.C. Smith, “Optimal Robustness in the Gap Metric,” Automatic Control, IEEE Transactions on, 35(6): p. 673-686, 1990. [42] Burke, J.V., A.S. Lewis, “A Nonsmooth, Nonconvex Optimization approach to Robust Stabilization by Static Output Feedback and Low-Order Controllers,” in IFAC, Symposium on Robust Cntrol Design 2003. Milan, Italy. [43] Burke, J.V., et al., “HIFOO-A MATLAB Package for Fixed-Order Controller Design and H-Infinity Optimization,” in IFAC, Symposium on Robust Cntrol Design 2006. Toulouse, France. [44] Mass flow meter, July 20, 2009: www.alicatscientific.com. [45] National Instrument: DAQ Card-6036E, July 20, 2009: www.ni.com. [46] Topcu, E.E., I. Yuksel, and Z. Kamis, “Development of Electro-Pneumatic Fast Switching Valve and Investigation of its Characteristics,” Mechatronics, 16(6): pp. 365-378, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44170 | - |
dc.description.abstract | 本論文利用系統識別方法求得質子交換膜燃料電池系統之數學模型,並應用強韌控制理論進行控制器設計及安裝,以達到穩定輸出電壓以及降低氫氣消耗的目標。
為簡化燃料電池本身的複雜架構,吾人由系統的觀點出發,將燃料電池系統視為一雙輸入雙輸出的系統,其輸入為空氣與氫氣的流量,輸出為電壓與電流,若是固定輸出負載,則該系統可進一步簡化為雙輸入單輸出之系統,因此吾人可藉由控制空氣與氫氣的流量,來控制電壓或電流的輸出量。再者,由於燃料電池本身為非線性且時變的系統,於是本文利用系統識別方法,在各操作點將質子交換膜燃料電池識別為雙輸入單輸出之線性系統,並將系統之非模型化動態,視為系統不確定性與外部干擾,利用強韌控制來達到穩定系統與增進效能的目標。 因為一般電器用品或是直流電壓轉換器皆需要穩定的電壓供應,所以在本文中以穩定輸出電壓為首要目標;另外,本文也針對一般的強韌控制具有階數較高(系統階數加上權重函數的階數)的缺點,引入定階強韌控制理論以及強韌PID設計方法,希望以較低階的控制器達到預期的控制目標。 | zh_TW |
dc.description.abstract | This thesis proposes control and integration of a proton exchange membrane fuel cell (PEMFC) system. At first, we assemble a PEMFC system, and find the system characteristics by identification techniques. Finally, we apply various robust control strategies to stabilize output voltage and to increase performance and efficiency of the PEMFC system.
From the system point of view, PEMFC can be regarded as a two-input-two-output system with the inputs of hydrogen and oxygen, and the outputs of cell voltage and current. By fixing the output resistance, the system can be further reduced to a two-input-single-output system. That is, we can either control the cell voltage or current output by regulating the air and hydrogen flow rates. By identification techniques, we find linear models of the PEMFC system at different operating points. And all unmodelled dynamics were considered system uncertainties. Then, we apply robust control strategies to stabilize the system and to increase the system performance. Because steady power supply is critical for electrical machinery, we aim to maintain steady output voltage. At first, we apply standard robust control design to stabilize the PEMFC system. However, the order of resulting controllers is constrained by the plants and weighting functions. Therefore, we apply fixed-order robust control and robust PID control algorithms to design controllers for a PEMFC. Finally, we evaluate efficiency of the system employing these controllers. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:43:09Z (GMT). No. of bitstreams: 1 ntu-98-R96522823-1.pdf: 4102286 bytes, checksum: c95360df142cbc82bdc65fb3a8ba8857 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 I 中文摘要 III Abstract V 目錄 VII 圖目錄 XI 表目錄 XIII 符號表 XV 第一章 序論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 各章摘要 5 第二章 燃料電池簡介 7 2.1 燃料電池的歷史 7 2.2 燃料電池的工作原理 8 2.3 燃料電池的種類與特性 9 2.4 燃料電池的優缺點與特色 12 第三章 質子交換膜燃料電池數學模型建立 15 3.1 質子交換膜燃料電池的系統架構與工作原理 15 3.1.1 質子交換膜燃料電池的系統架構 15 3.1.2 質子交換膜燃料電池工作原理 17 3.2 質子交換膜燃料電池的自由能與活化電位 18 3.2.1 理想電位與溫度關係 19 3.2.2 理想電位與氣體壓力的關係 20 3.3 極化現象 22 3.3.1 活化損耗(activation losses) 23 3.3.2 歐姆損耗(ohmic losses) 23 3.3.3 濃度損耗(concentration losses) 23 3.4 燃料電池動態模型 24 3.4.1 動態模型建立的基本假設 24 3.4.2 陰極氣體擴散模型 25 3.4.3 陰極電化學動力模型 26 3.4.4 電池內阻模型 27 第四章 系統識別 31 4.1 系統鑑別原理與方法 31 4.2 部分空間系統鑑別法 33 4.3 實驗設備 37 4.4 系統識別實驗規劃 42 4.5 系統識別實驗結果 44 第五章 強韌控制理論介紹和設計 45 5.1 範數定義 45 5.1.1 訊號及系統的範數表示 46 5.2 系統不確定性 47 5.3 強韌控制架構的一般化 49 5.4 標稱系統選擇 51 5.5 強韌性概念與分析 53 5.6 次最佳化 強韌性控制器設計 56 5.7 定階控制器設計 58 5.8 迴路成型設計 63 5.9 強韌PID控制器設計 66 5.10 控制器合成 69 第六章 強韌控制器的實驗結果和討論 71 6.1 個人電腦線上控制 71 6.1.1 定電壓變負載實驗 72 6.1.2 定負載變電壓實驗 77 6.2 控制性能比較 80 6.2.1 氫氣使用效率 80 第七章 結論與未來展望 89 7.1 結論 89 7.2 未來展望 91 參考文獻 93 附錄A:脈波調變控制(Pulse Width Modulation theory) A-1 附錄B:口試委員問題與回答 B-1 | |
dc.language.iso | zh-TW | |
dc.title | 質子交換膜燃料電池控制及整合 | zh_TW |
dc.title | Control and Integration of a Proton Exchange Membrane Fuel Cell System | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏家鈺,呂志誠,蔡宗惠 | |
dc.subject.keyword | 質子交換膜燃料電池,系統識別,強韌控制,定階控制設計,強韌PID控制,氫氣使用效率, | zh_TW |
dc.subject.keyword | Proton Exchange Membrane Fuel Cell (PEMFC),System Identification,Robust control,Fix-order,Robust PID,Hydrogen efficiency, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 4.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。