Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44147
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊立民(Lee-Ming Chuang)
dc.contributor.authorYi-Chih Liangen
dc.contributor.author梁益誌zh_TW
dc.date.accessioned2021-06-15T02:42:03Z-
dc.date.available2012-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-08-11
dc.identifier.citation1.Actos® prescribing information. Takeda Pharmaceuticals America, Inc. IL, SA(2007).
2.A Diabetes Outcome and Progression Trial,ADOP;Prospective Pioglitazone Clinical Trial in Marcovascular Events, PROACTIVE(FDA, 2007).
3.American Diabetes Association: Standards of medical care in diabetes. Diabetes Care 27 (Suppl. 1): S15–S35, 2003.
4.Avandia® prescribing information. GlaxoSmithKline, NC, USA (2007).
5.Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21:263-265.
6.Cadnapaphornchai MA, Gurevich AK, Weinberger HD, Schrier RW. Pathophysiology of sodium and water retention in heart failure. Cardiology 2001;96(3-4):122-31
7.Cavaghan MK, Ehrmann DA, Byrne MM, Polonsky KS. Treatment with the oral antidiabetic agent troglitazone improves β cell responses to glucose in subjects with impaired glucose tolerance. J. Clin. Invest. 1997; 100:530–537.
8.Chaiken RL, Ecker-Norton M, Pasmantier R, et al. Metabolic effects of darglitazone, an insulin sensitizer, in NIDDM subjects. Diabetologia 1995; 38:1307-1312.
9.Chang TJ, Chen WP, Yang C, Lu PH, Liang YC, Su MJ, Lee SC, Chuang LM. Serine-385 phosphorylation of inwardly rectifying K+ channel subunit (Kir6.2) by AMP-dependent protein kinase plays a key role in rosiglitazone-induced closure of the KATP channel and insulin secretion in rats. Diabetologia 2009; 52:1112-1121.
10.Chen L, Yang B, McNulty JA, Clifton LG, Binz JG, Grimes AM, Strum JC, Harrington WW, Chen Z, Balon TW, et al. GI262570, a peroxisome proliferator-activated receptor γ agonist, changes electrolytes and water reabsorption from the distal nephron in rats. J. Pharmacol. Exp. Ther. 2004; 312:718-725.
11.Ciaradi TP, Gilmore A, Olefsky JMM et al. In vitro studies on the action of CS-045 a new antidiabetic agent. Metabolism 1990; 39:1056-62.
12.Clay FS. TZDs and diabetes: testing the waters. Nature medicine 2005;11:822 -824
13.Day C. Thiazolidinediones:a new class of antidiabetic drugs. Dibet. Med. 1999; 16:179-192.
14.DeFronzo RA. Lilly lecture 1987. The triumvirate:beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988; 37:667-687.
15.Dibas AI, Mia AJ, Yorio, Aquaporins (water channels): role in vasopressin-activated water transport. Proc. Soc. Exp. Biol. Med. 1998; 219 (3): 183-99.
16.FDA ALERT: Information for Healthcare Professionals. Pioglitazone HCl (marketedas Actos, Actoplus Met, and Duetact). Food and Drug Administration 8-14-2007. Accessed on 8-30-2007.
17.Guan Y, Hao C, Cha DR, Rao R, Lu W, Kohan DE, Magnuson MA, Redha R, Zhang Y, Breyer MD. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat. Med. 2005; 11:875-879.
18.Hansen L, Ekstrøm CT, Palacios RTY, Anant M, Wassermann K, Reinhardt RR. The Pro12Ala variant of the PPARG gene is a risk factor for peroxisome proliferator-activated receptor-α/γ agonist-induced edema in type 2 diabetic patients. Journal of Clinical Endocrinology and Metabolism 2006; 91(9):3446–3450.
19.Henry RR. Thiazolidinediones. Endocrinol. Metab. Clin. North Am. 1997; 26(3):553-573.
20.Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH. Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci USA 1996; 96:11513-11518.
21.Hong G, Lockhart A, Davis B, et al. PPARγactivation enhances cell surface ENaCα via up-regulation of SGK1 in human collecting duct cells. FASEB Journal 2003; 17(3):1966-1968.
22.IDF. International Diabetes Federation Task Force on Diabetes Health Economics, Diabetes health economics: facts, figures, and forecasts. Brussels: International Diabetes Federation, 1997.
23.IMS Health. IMS National Prescription Audit Plus™ June 1999-March 2006.
24.Ivarsen P, Frokiaer J, Aagaard NK, Hansen EF, Bendtsen F, Nielsen S, et al. Increased urinary excretion of aquaporin 2 in patients with liver cirrhosis. Gut 2003;52(8):1194-9.
25.Kenpper MA, Wade JB, Terris J, Ecelbarger CA, Marples D, Mandon B, Chou CL, Kishore BK, and Nielsen S. Renal aquaporins. Kidney Int. 1996; 49:1712-1717.
26.Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA. Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J. Physiol. Renal. Physiol. 1999;276: F96–F103.
27.Knepper MA. Proteomics and the kidney. J. Am. Soc. Nephrol. 2002; 13:1398- 1408.
28.Konstas AA, Korbmacher C. The γ-subunit of ENaC is more important for channel surface expression than the β-subunit. Am. J. Physiol. Cell Physiol. 2003; 284:C447-C456.
29.Lebovititz HE. Insulin-mimetic and insulin-sensitizing drugs. Diabetes Res. Clin. Pract. 1993; 20:89-91.
30.Lehmann JM, Moore LB, Smith-Oliver TA, Wilkson WO, Wilkison TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol. Chem. 1995; 270:12953-12956.
31.Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. UKPDS 26:Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet. Med. 1998; 15:297-303.
32.Miyata KS, McCaw SE, Marcus SL, Rachubinski RA, Capone JP. The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo. Gene 1994; 148:327-30.
33.Mudaliar S, Chang AR, Henry RR. Thiazolidinediones, peripheral edema, and type 2 diabetes: incidence, pathophysiology, and clinical implications. Endocr. Pract. 2003; 9:406-416.
34.Nesto RW, Bell D, Bonow RO et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation 2003; 108: 2941–2948.
35.Page RLII, Gozansky WS, Ruscin JM. Possible heart failure exacerbation associated with rosiglitazone: case report and literature review. Pharmacotherapy 2003; 23:945-954.
36.Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19(1):149-150.
37.Rendell M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs 2004; 64(12):1339-1358.
38.Saad S, Agapiou DJ, Chen XM, Stevens V, Pollock C. The role of Sgk-1 in the upregulation of transport proteins by PPARgamma agonists in human proximal tubule cells. Nephrol. Dial. Transplant. 2008 (ePub ahead of print).
39.Sabolic I, Katsura T, Verbavatz JM, Brown D. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 1995;145(1):107-8.
40.Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996; 45:1661-1669.
41.Shimabukuro M, Zhou YT, Lee Y, Unger RH. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem. 1998; 273:3547-3550.
42.Song J, Knepper MA, Hu X, Verbalis JG, Ecelbarger CA. Rosiglitazone activates renal sodium- and water-reabsorptive pathways and lowers blood pressure in normal rats. J. Pharmcol. Exp. Ther. 2004; 308:426-433.
43.Tiwari S, Blasi ER, Heyen JR, McHarg AD, Ecelbarger CM. Time course of AQP-2 and ENaC regulation in the kidney in response to PPAR agonists associated with marked edema in rats. Pharmcol. Res. 2008; 57:383-392.
44.Tobler AR, Short S, Andersen MR, Paner TM, Briggs JC, Lambert SM, Wu PP, Wang Y, Spoonde AY, Koehler RT, Peyret N, Chen C, et al. The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech. 2005; 16:398-406.
45.Umenishi F, Narikiyo T, Vandewalle A, Schrier RW. cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway. Biochim Biophys Acta. 2006;1758(8):1100-5.
46.Varley CL, Garthwaite MAE, Cross W, Hinley J, Trejdosiewicz LK, Southgate J, PPARγ-regulated tight junction development during human urothelial cytodifferentiation. Journal of Cellular Physiology 2006;208(2): 407–417.
47.Volk KA, Husted RF, Sigmund RD, Stokes JB. Overexpression of the epithelial Na+ channel subunit in collecting duct cells: interactions of Liddle‘s mutations and steroids on expression and function. J. Biol. Chem. 2005; 280:18348-18354.
48.Wallace TM, Levy JC, Matthews DR. An increase in insulin sensitivity and basal β-cell function in diabetic subjects treated with pioglitazone in a placebo-controlled randomized study. Diabet. Med. 2004; 21:568-576.
49.Weisz OA, Johnson JP. Noncoordinate regulation of ENaC: paradigm lost? Am. J. Physiol. Renal Physiol. 2003; 285:F833-F842.
50.Whitcomb RW, Saltiel AR. Thiazolidinediones. Exper Opin Invest Drug 1995; 4:1299-1309.
51.Wong KC, Wang Z. Prevalence of type 2 diabetes mellitus of Chinese populations in Mainland China, Hong Kong, and Taiwan. Diabetes Res and Clin Pract 2006; 73:126-134.
52.Yasui M, Zelenin SM, Celsi G, Aperia A. Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol. 1997 ;272(4 Pt 2):F443-50.
53.Zhang H, Zhang A, Kohan DE, Nelson RD, Gonzalez FJ, Yang T. Collecting duct-specific deletion of peroxisome proliferator-activated receptor gamma blocks thiazolidinedione-induced fluid retention. Proc. Natl. Acad. Sci. USA 2005; 102:9406-9411.
54.Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414:782-787.
55.中華民國行政院衛生署. 衛生統計系列(四)全民健康保險醫療統計年報90年~95年衛生統計資訊網 (網址:http://www.doh.gov.tw/statistic/,查詢日期2008/08/25)
56.中華民國糖尿病學會、中華民國心臟學會. 糖尿病與心血管疾病指引2009
57.中央健康保險局:糖尿病專業醫療服務品質報告。(引用2006/02/14)。Available from: URL: http://www.nhi.gov.tw/webdata/webdata.asp?menu =1&menu_id=&webdata_ID=848
58.行政院衛生署:藥品許可證查詢。(引用2005/11/27)。Available from: http://www.nhi.gov.tw/webdate/webdate.asp?menu=1&menu_id=7& webdate_id=848
59.蕭淑華、游新、吳達仁:胰島素增敏劑—thiazolidinediones。內科學誌 2001; 12(2):54-61.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44147-
dc.description.abstract研究背景
Thiazolidinediones (TZDs)類藥物為新一代胰島素增敏劑,包含rosiglitazone、pioglitazone;目前廣泛用於第2型糖尿病的第二線或第三線治療藥物。TZDs經由活化peroxisome proliferator-activated receptor γ (PPARγ;過氧化體增殖劑活化受器γ)而達到增加胰島素敏感度的作用。然而體液滯留(fluid retention)為TZDs類藥物最嚴重的副作用之一,通常會導致10–15%的糖尿病患者體重快速增加、產生周邊水腫或肺水腫。之前的研究指出,TZDs類藥物引發的水腫,最主要是因為腎臟管道系統對水、鈉再吸收能力增強與血管通透性增高導致;少部分因為腎臟球囊系統的腎血流量下降或腎小球濾過率下降導致。而rosiglitazone會導致小鼠腎臟中Na-K-2Cl cotransporter (SLC12A1)、sodium hydrogen exchanger 3 (NHE3)、aquaporin 2 (AQP2)與aquaporin 3 (AQP3)表現量增加。經由PPARγ基因剔除鼠證實,TZDs類藥物會經由PPARγ導致體重快速增加;且有間接證據顯示,epithelial sodium channel γ(SCNN1G)參與其中。所以在TZDs導致水腫的機制中,腎臟的作用佔了很大的因素。
研究目的
關於PPARγ在腎臟中的功能與機制,目前已被大量探討。藉由此藥物基因學的研究,看候選基因之基因多型性是否與TZDs類藥物引發的周邊水腫有任何相關性。並期望能找出較易發生周邊水腫的基因型,以減低第2型糖尿病患使用TZDs類藥物發生周邊水腫的機率,提高藥物使用的安全性。
研究方法
挑選PPARG (peroxisom proliferator-activated receptor γ),以及在腎臟中負責水、鈉再吸收的通道、運輸蛋白:SLC12A1(Na-K-2Cl cotransporter)、NHE3 (sodium hydrogen exchanger 3)、SCNN1G (epithelial sodium channel γ)、AQP2 (aquaporin 2)、AQP3 (aquaporin 3)與AVPR2 (arginine vasopressin receptor 2)作為候選基因(candidate genes)。並從此7個基因中挑選29個tag-SNPs (tag single nucleotide polymorphisms),利用Applied Biosystems SNPlexTM技術做為基因多型性試驗平台。於台大醫院門診時詢問就診的第2型糖尿病患,是否曾經或正在接受TZDs類藥物治療,經解說試驗內容後願意簽署同意書之受試者共328名。再根據納入與排除條件,挑選出適合的個案進行試驗。本試驗為病案組與控制組的藥物基因學研究。
結果
統計結果顯示AQP2、SCNN1G與SLC12A1的基因多型性與TZDs類藥物引發的周邊水腫有相關性。AQP2.1 (rs296766, C/T;odds ratio 2.67, p=0.0003)。SCNN1G.4 (rs4401050, C/T;odds ratio 1.88, p=0.0496)。SLC12A1.4 (rs12904216, A/G;odds ratio 1.73, p=0.0096)。其它相關性還包括女性性別因子(odds ratio 3.59, p<0.001),顯示女性服用TZDs類藥物較易引發水腫。年齡因子 (66. 82±11.66 vs. 62.64±10.85, p=0.011),顯示年齡越高對於TZDs類藥物引發的水腫為危險因子。
結論
女性、年齡較高對於TZDs類藥物來說,都是已知的危險因子。本藥物基因學研究提供AQP2、SCNN1G、SLC12A1基因多型性與TZDs導致水腫的危險因子,可以作為將來第2型糖尿病患選擇TZDs類藥物前的評估與考量。
關鍵字:第2型糖尿病、過氧化體增殖劑活化受器γ、硫氮烷二酮類、體液滯留、水腫、第2型水通道蛋白
zh_TW
dc.description.abstractContext.
Thiazolidinedione (TZDs), synthetic insulin-sensitizing drugs that include rosiglitazone and pioglitazone, are highly effective in the treatment of type 2 diabetes. TZDs are believed to mediate their antidiabetic effect via activation of peroxisome proliferator-activated receptor γ (PPARγ). However, fluid retention, presented as rapid weight gain, and peripheral and pulmonary edema in 10-15% patients have emerged as the most common and serious side effects of TZDs. According to the previous studies, these drugs may cause renal fluid reabsorption directly by affecting tubular transport, renal sodium retention, and vascular hyperpermeability or indirectly by affecting renal hemodynamics or processes. Rosiglitazone increased whole kidney protein abundance of the bumetanide-sensitive Na-K-2Cl cotransporter (SLC12A1), the sodium hydrogen exchanger 3 (NHE3), the aquaporin 2 (AQP2) and aquaporin 3 (AQP3) in mice. Pioglitazone increased SCNN1G mRNA (encoding the epithelial sodium channel γ, ENaCγ) expression in inner medullary collecting ducts (IMCDs) through a PPARγ-dependent pathway. According to the evidence above, renal mechanisms play a major role in TZD-induced fluid retention.
Objective.
Since a direct role for PPARγ in kidney function has now been identified, the identification of its target genes will allow the initiation of genetic studies that may help identify individuals susceptible to develop edema. The objective of the present study is to investigate if genetic variations in selected candidate genes are associated with the risk of fluid retention and peripheral edema in type 2 diabetic patients treated with TZDs.
Design.
The genes of peroxisom proliferator-activated receptor γ(PPARG), arginine vasopressin receptor 2 (AVPR2) and the genes of major renal sodium and water transporters and channel proteins (SLC12A1, Na-K-2Cl cotransporter;NHE3, sodium hydrogen exchanger 3;SCNN1G, epithelial sodium channel γ;AQP2, aquaporin 2 and AQP3, aquaporin3) are selected into the candidate genes. The 29 tag single nucleotide polymorphisms (tag-SNPs) of these 7 candidate genes were performed by Applied Biosystems SNPlexTM assays. And genomic DNA was obtained from 328 type 2 diabetic patients receiving with TZDs since 2001. According to the inclusion and exclusion criteria, we plan to conduct a case-control study to test the association between SNPs in certain candidate genes and TZDs related peripheral edema.
Results.
SNPs of AQP2, SCNN1G and SLC12A1 are associated with TZD-related edema. AQP2.1 (rs296766, C/T;odds ratio 2.67, p=0.0003). The odds ratio was 2.67 for the AQP2.1 risk allele compared with the non-risk allele, corresponding to a population attributable risk fraction of 29.75%. SCNN1G.4 (rs4401050, C/T;odds ratio 1.88, p=0.0496). The odds ratio was 1.88 for the SCNN1G.4 risk allele compared with the non-risk allele, corresponding to a population attributable risk fraction of 11.49%. SLC12A1.4 (rs12904216, A/G;odds ratio 1.73, p=0.0096). The odds ratio was 1.73 for the SLC12A1.4 risk allele compared with the non-risk allele, corresponding to a population attributable risk fraction of 18.79%. Other risk factors included female gender (odds ratio 3.59, p<0.001) and age (66.82±11.66 vs. 62.64± 10.85, p=0.011).
Conclusion.
The female gender and age are well known clinical risk factors for TZD-induced edema. The polymorphisms in AQP2, SCNN1G and SLC12A1 genes may be used as clinically relevant pharmacogenetic risk markers for edema in patients with TZDs therapy.
Key words:Type 2 diabetes, PPARγ, Thiazolidinediones (TZDs), Fluid retention, Edema, AQP2
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:42:03Z (GMT). No. of bitstreams: 1
ntu-98-P96448005-1.pdf: 4411100 bytes, checksum: aaf422693357e6b55ca5421add7101c2 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
口試委員會審定書
誌謝-----------------------------------------------------------------------------------------I
中文摘要---------------------------------------------------------------------------------III
英文摘要---------------------------------------------------------------------------------V
目錄--------------------------------------------------------------------------------------VII
圖目錄-------------------------------------------------------------------------------------X
表目錄------------------------------------------------------------------------------------XI
第一章 前言------------------------------------------------------------------------------1
1.1 研究背景----------------------------------------------------------------------------1
1.2 研究目的----------------------------------------------------------------------------1
第二章 文獻探討-----------------------------------------------------------------------2
2.1 糖尿病-------------------------------------------------------------------------------2
2.1.1 糖尿病的定義------------------------------------------------------------------2
2.1.2 糖尿病的臨床分類------------------------------------------------------------3
2.2 第二型糖尿病的治療現況-----------------------------------------------------4
2.2.1 治療方式-------------------------------------------------------------------------4
2.2.1.1 胰島素製劑-------------------------------------------------------------------4
2.2.1.2 口服降血糖藥物-------------------------------------------------------------5
2.3 Thiazolidinediones(TZDs)類藥物-------------------------------------------7
2.3.1 TZDs 的作用機轉與PPARs-----------------------------------------------7
2.3.2 TZDs 的副作用-----------------------------------------------------------------8
2.4 使用TZDs類藥物導致水腫的機制探討------------------------------------9
2.5 使用TZDs 類藥物導致水腫的candidate genes-----------------------12
第三章 研究方法與材料------------------------------------------------------------14
3.1 病人的來源-----------------------------------------------------------------------14
3.2 受試者選擇標準-----------------------------------------------------------------14
3.2.1 納入條件------------------------------------------------------------------------14
3.2.2 排除條件------------------------------------------------------------------------14
3.3 臨床資料收集--------------------------------------------------------------------14
3.3.1 病患基本資料-----------------------------------------------------------------14
3.3.2 TZDs 的使用種類與服用期間--------------------------------------------15
3.3.3 使用TZDs 前後的體重------------------------------------------------------15
3.3.4 各項生化指數------------------------------------------------------------------15
3.4 血液之Genomic DNA 萃取--------------------------------------------------15
3.5 HapMap 網站分析候選基因的tag-SNP----------------------------------16
3.6 ABI SNPlexTM genotyping system 檢定基因型---------------------17
3.7 統計分析---------------------------------------------------------------------------18
3.8 利用HaploView 運算haplotype 與permutation 校正----------------19
3.9 利用Genetic Power Calculator計算power值---------------------------20
第四章 結果-----------------------------------------------------------------------------21
4.1 挑選的tag-SNPs 對於全基因SNPs 的覆蓋率-------------------------21
4.2 tag-SNPs 的基本資料---------------------------------------------------------21
4.3 受試者人數統計------------------------------------------------------------------21
4.4 受試者生化指數與相關指數分析-------------------------------------------21
4.5 SNPs 與TZDs 類藥物引發周邊水腫之風險的相關性分析---------22
4.6 Haplotype 與TZDs 類藥物引發周邊水腫之風險的相關性分析---22
4.7 邏輯回歸分析( Logistic Regression Analysis )-----------------------23
4.8 多重檢定校正(Permutation testing) --------------------------------------23
4.9 累積效應(Cumulative effects) -----------------------------------------------23
4.10 族群可歸因風險分率(Population attributable risk fraction)------24
4.11 Genetic power calculation--------------------------------------------------24
第五章 討論----------------------------------------------------------------------------- 25
第六章 圖表------------------------------------------------------------------------------30
參考文獻----------------------------------------------------------------------------------65
附錄----------------------------------------------------------------------------------------72
dc.language.isozh-TW
dc.subject第2型水通道蛋白zh_TW
dc.subject第2型糖尿病zh_TW
dc.subject過氧化體增殖劑活化受器γzh_TW
dc.subject硫氮烷二酮類zh_TW
dc.subject體液滯留zh_TW
dc.subject水腫zh_TW
dc.subjectPPARγen
dc.subjectAQP2en
dc.subjectEdemaen
dc.subjectFluid retentionen
dc.subjectType 2 diabetesen
dc.subjectThiazolidinediones (TZDs)en
dc.title候選基因之基因多型性與Thiazolidinedione有關的周邊水腫的相關性研究zh_TW
dc.titleGenetic Polymorphisms of Candidate Genes with Thiazolidinedione-associated Peripheral Edemaen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor呂勝春(Sheng-Chung Lee)
dc.contributor.oralexamcommittee何橈通(Low-Tone Ho)
dc.subject.keyword第2型糖尿病,過氧化體增殖劑活化受器γ,硫氮烷二酮類,體液滯留,水腫,第2型水通道蛋白,zh_TW
dc.subject.keywordType 2 diabetes,PPARγ,Thiazolidinediones (TZDs),Fluid retention,Edema,AQP2,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2009-08-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved