Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44113
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李慧梅
dc.contributor.authorShan-Jen Luen
dc.contributor.author盧宣任zh_TW
dc.date.accessioned2021-06-15T02:40:30Z-
dc.date.available2012-08-14
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-11
dc.identifier.citationAhmed, Sk. F., S. Das, M. K. Mitra, K.K. Chattopadhyay “Effect of temperature on the electron field emission from aligned carbon nanofibers and multiwalled carbon nanotubes” Applied Surface Science., 254, 610–615(2007).
Bachtold, A., P. Hadley, T. Nakanishi, C. Dekker, “Logic Circuits with Carbon Nanotube Transistors,” Science., 294, 1317 (2001).
Baughman, R. H., A. A. Zakhidov, W. A. de Heer, “Carbon Nanotubes—the Route Toward Applications,” Science., 297, 787-792 (2002).
Bethune, D. S., C. H. Kiang, M. S. Devries,G. Gorman,R. Savoy,J. Vazquez and R. Beyers, “Cobalt-catalysed growth of carbon nanotube with single-atomic-layer walls,” Nature., 363, 605-607 (1993).
Bonard, J. M., F. Maier, T. Stockli, et al. “Field emission properties of multiwalled carbon nanotubes,” Ultramicroscopy., 73, 7 (1998).
Bracken, T. D., Small Air Ion Properties, Chapter 1, l-12, CRC Press, Boca Raton, FL., (1987).
Britto, P. J., K. S. V. Santhanam, A. Rubio, et al. “Improved charge transfer at carbon nanotube electrodes,” Adv Mater 11., 154 (1998)
Challenger,O., Braven, J., Harwood, D., Rosen, K., Richardson, G., Negative Air Ionisation and the Generation of Hydrogen Peroxide, The Science of the Total Environment., 177, 215-219 (1996).
Charry, J.M., Kvet, R., “Air Ions: Physical and Biological Aspects, Boca Raton, “FL: CRC Press, (1987).
Charlier, J. C., J. P. Michenaud, “Energetics of multilayered carbon tubules,” Phys Rev Lett., 70, 1858 (1993).
Charinpanitkul, T., W. Tanthapanichakoon., N. Sano.,” Carbon nanostructures synthesized by arc discharge between carbon and iron electrodes in liquid nitrogen,” Current Applied Physics., 9, 629–632 (2009).
Che, J., T. Cagın, W. A. Goddard, “ Thermal Conductivity of Carbon Nanotubes,” Nanotechnology., 11, 65–69 (2000).
Chen, H. M., F. Li., G. Su.,et al .,”Appl Phys Lett” 72, 3282 (1998).
Cheng, Y., O. Z, “Electron field emission from carbon nanotubes,” Physique., 4, 1021 (2003).
Cheng, H. M., Q. H. Yang, C. Liu, et al. “Hydrogen storage in carbon nanotubes,” Carbon., 39 ,1447 (2001).
Cheng, Y., O. Zhou, “Electron field emission from carbon nanotubes,” C.R. Physique 4., 1021 (2003).
Chico, L., L. X. Benedict, S. G. Louie and M. L. Cohen, “Quantum conductance of carbon nanotubes with defects,” Physical Review B., 54, 2600-2606 (1996).
Choi, W. B. , D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Applied Physics Letters., 75, 3129-3131(1999).
Cooray, V., M. Rahman, ” Efficiencies for production of NOX and O3 by streamer discharges in air at atmospheric pressure”.J. Electrostat., 63, 977–983 (2005).
Collins, P. G., K. Bradley, M. Ishigami, A. Zett, “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes,” Science, 287,1801-1804 (2000).
Collins, P. G., M. S. Arnold, P. Avouris, “ Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science., 292, 706-709 (2001).
Crespi, V. H., “Relations between global and local topology in multiple nanotube junctions,” Phys Rev B., 58, 12671 (1998).
Dai, H., J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, “Nanotube as nanoprobes in scanning probe microscopy,” Nature., 384, 147-150 (1996).
Daniels, S. L., “Applications of air ionization for control of VOCs and PMx,” 94th Annual Conference of Air & Waste Management Association., paper 918 (2001).
Daniels, S.L. “On the Ionization of Air for Removal of Noxious Effluvia” (Air Ionization of Indoor Environments for Control of Volatile and Particulate Contaminants With NonthermalPlasmas Generated by Dielectric-Barrier Discharge). IEEE TRANSACTIONS ON PLASMA SCIENCE VOL. 30, NO. 4 (2002).
Dresselhaus, M. S., G. Dresselhaus and R. Saito, “Physics of carbon nanotubes,” Carbon., Vol.33, No.7, 883-891 (1995).
Dresselhaus, M, G. Dresselhaus, P. Eklund, R. Saito, Carbon nanotubes, Physics World., January (1998).
Ebbesen, T. W. and Ajayan, P. M., “Large-scale synthesis of carbon nanotubes,” Nature., 358, 220-222 (1992).
Faruque, Sk., Ahmed, Myoung. Woon Moon., and Kwang-Ryeol Lee” Enhancement of electron field emission property with silver incorporation into diamondlike carbon matrix” Appl. Phys. Lett., 92, 193502 (2008).
Fridovich, Irwin., “OXYGEN TOXICITY: A RADICAL EXPLANATION” Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA Accepted 28 October 1997; published on WWW 24 March (1998).
Goldstein, N. I., R. N. Goldstein, M. N. Merzlyak, “Negative air ions as a source of superoxide,” International Journal of Biometeorology., 36, 118–122 (1992).
Grabarczyk, Z., “Effectiveness of indoor air cleaning with corona ionizers,” Journal of Electrostatics, 51-52, 278-283 ( 2001).
Graudenz, G. S., C. H. Oliveira., A. Tribess., C. Jr. Mendes., M. R. D.O. Latorre., J. Kalil, “Association of air-conditioning with respiratory symptoms in office workers in tropical climate” Indoor Air., 15(1), 62~66, February (2005).
Guo, T., P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chemical Physics Letters., 243, 49-54 (1995).
Hainfeld, J. F., Scanning Electron Microsc., 1, 591 (1977).
Hawkins, L. H., and T. Barker, “ Air Ions and Human Performance,” Ergonomics., 21(4), 273-278, (1978).
Hyslop, P. A., D. B. Hinshaw, I. U. Scraufstatter, C. G. Cochrane, S. Kunz, K. Vosbeck, “Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defence,” Free Radical Biology and Medicine., 19, 31–37 (1995).
Iijima, S., “ Helical Microtubules of Graphitic Carbon,” Nature., 354, 56 (1991).
Ilie, A., A. C. Ferrari., T. Yagi., J. Robertsn.,” Effect of sp-phase nanostructure on field emission from amorphous carbons,” Appl. Phys. Lett., 76, 2627 (2000).
Iwama, H., Ohmizo, H., Obara, S., “The Relaxing Effect of Negative Air Ions on Ambulatory Surgery Patients,” Can J Anesth., 51(2), 187-188 (2004).
Jorio A., R. Saito., J. H. Hafner., C. M. Lieber., M. Hunter., T. McClure., G. Dresselhaus.,M. S. Dresselhaus., “Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering,” Phys Rev Lett., 86, 1118 (2001).
Kanemitsu, Y., S. Imamura, “Reversible Light-Induced change in gap states in molecularly doped polymers studied by Xerographic dark-discharge measurements” Solid State Communications., Vol. 68, No. 7, pp. 701-705, (1988).
Kayastha, V. K., B. Ulmen, Y. K. Yap, “Effect of graphitic order on field emission stability of carbon nanotubes” Nanotechnology., 18, 035206 (2007).
Kellogg, E.W., Yost, M.G., Barthakur, N. & Kreuger, A.P., “ Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus,” Nature vol.281 (1979).
Kiang, C. H., M. Endo., P. M. Ajayan et al.,” Size Effects in Carbon Nanotubes,” Phys Rev Lett., 81, 1869 (1998).
Kim, Y. C., J. W. Nam, M. I. Hwang, I. H. Kim, C. S. Lee, Y. C. Choi, et al, “Uniform and stable field emission from printed carbon nanotubes through oxygen trimming” APPLIED PHYSICS LETTERS., 92, 263112 (2008).
Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robison, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, W. H. Engelmann, “The National Activity Pattern Survey(NAHPS):a resource for assessing exposure to environmental pollutants”, J. Exposure Analysis and Environ. Epi., 11, 231-252.(2001).
Kondrashova, M.N.,Grigorenko, E.V., Tikhonov, A.N., Sirota, T.V., Temnov, A.V., Stavrovskaja, I.G., Kosyakova, N.I., Lange, N.V., Tikhonov, V.P., “The Primary Physico-Chemical Mechanism for the Beneficial/Medical Effects of Negative Air Ions, “IEEE Transactions on Plasma Science, 28(1), 203-237 (2000).
Kong, J., M. Chapline, H. Dai, “Functionalized single walled carbon nanotubes for molecular hydrogen sensors,” Adv. Mater., 13, 1384 (2001).
Krueger. A.P., E.J. Reed, K.B. Brook and M.B. Day.,” Air Ion Action on Bacteria,” Int. J. Biometeor vol. 19, number 1, 65-71 (1975).
Krueger, A. P. and E. J. Reed, “ Biological Impact of Small Air Ions,” Science., 193, 1209-1213 (1976).
Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “ C60:Buckminsterfullerene,” Nature., 318, 122-123 (1985).
Lee, B. U., M. Yermakov, S. A. Grinshpun, “Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission,” Atmospheric Environment., 38, 4815–4823 (2004).
Li, W. Z., S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, “Large-scale synthesis of aligned carbon nanotubes,” Science., 274, 1701-1703 (1996).
Mayya, Y. S., B. K. Sapra, A. Khan, and F. Sunny, “ Aerosol Removal by Unipolar Ionization in Indoor Environments,” Journal of Aerosol Science,35, 923-941 (2004).
Nagato Kenkichi, Yasunori Matsui, Takahiro Miyata, Toshiyuki Yamauchi” An analysis of the evolution of negative ions produced by a corona ionizer in air” International Journal of Mass Spectrometry., 248, 142–147(2006).
Nakane, H., Asami, O., Yamada, Y., Ohira, H., “Effect of Negative Air Ions on Computer Operation, Anxiety and Salivary Chromogranin A-Like Immunoreactivity,” International Journal of Psychophysiology, 46, 85-89 (2002).
Nilsson, L., O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach H. Kind, J-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films” APPLIED PHYSICS LETTERS., VOLUME 76, NUMBER 15 10 APRIL (2000).
Nishikawa, K. and Nojima, H., “Air Purification Effect of Positively and Negatively Charged Ions Generated by Discharge Plasma at Atmospheric Pressure,” Jpn. J. Appl. Phys., 40, L835–L837 (2001).
Nordheim, L. W. “The Effect of the Image Force on the Emission and Reflexion of Electrons by Metals,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character., (1928).
Odom, T. W., J. L. Huang, P. Kim, and C. M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes,” J. Phys. Chem. B,, 104, 2794-2809 (2000).
Okbubo, T., S. Hamasaki, Y. Nomoto, J. S. Chang, T. Adachi, “Effect of corona wire heating on the downstream ozone concentration profiles in an air-cleaning wire-duct electrostatic precipitator,” IEEE Trans. Industry Appl., 26, 542-549 (1990).
Pan, Z. W., S. S. Xie, L. Lu, et al. “Tensile tests of ropes of very long aligned multiwall carbon nanotubes,” Appl. Phys. Lett., 74, 3152 (1999).
Popov, V. N., “Carbon nanotubes: properties and application,” Materials Science and Engineering R., 43, 61–102 (2004).
Rao A. M., E. Richter, Shunji Bandow, et al., “Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes,” Science., 275, 187 (1997).
Ryushi, T., Ichirou. Kita, T. Sakurai, A. Yasumatsu, M. Isokawa, Y. Aihara, K. Hama, “ The Effect of Exposure to Negative Air Ions on the Recovery of Physiological Responses after Moderate Endurance Exercise,” Int J Biometeorol., 41, 132-136 (1998).
Saakyan, I.R., Gogvadze, V.G., Sirota, T.V., Stavrovskaya, I.G., Kondrashova, M.N., “Physiological Activation of Peroxidation by Negative Air Ions,” Biofizika, 43, 580-587 (1998).
Sato, H., H. Takegawa, H. Yamaji, H. Miyake, K. Hiramatsu and Y. Saito, “Fabrication of carbon nanotube array and its field emission property,” J. Vac. Sci. Technol. B., 22, 1335-1337 (2004).
Skalny, J. D., T. Mikoviny, S. Matejcik, N. J. Mason, “An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air,” International Journal of Mass Spectrometry., 233, 317-324 (2004).
Son,Y. W., S. Oh, J. Ihm1 and S. Han, “Field emission properties of double-wall carbon nanotubes” Nanotechnology., 16, 125–128(2005).
Srivastava, Sanjay. Kumar., Vasant. D. Vankar., Vikram. Kumar., “Excellent Field Emission Properties of Short Conical Carbon Nanotubes Prepared by Microwave Plasma Enhanced CVD Process” Nanoscale Res Lett., 3, 25–30(2008).
Stacy, L. D., “ Air Ionization of Indoor Environments for Control of Volatile and Plasma Generated by Dielectric-Barrier Discharge,” IEEE Transactions on Plasma Science., 30(4), 1471-1481 (2002).
Stavrovskaya, I.G., “Optimization of energy dependent processes in mitochondria after Inhalation of Negative Air Ions,” Biofizika, 43, 766-771 (1998).
Sveningsson, M., R. E. Morjan, O. A. Nerushev and Campbell, Eleanor E.B., “Highly efficient electron field emission from decorated multiwalled carbon nanotube films,” APPLIED PHYSICS LETTERS., 85, 4487-4489 (2004).
Tammet, H., “ Geophysics, Astronomy, and Acoustics, Atmospheric Electricity, B. Air Ions,” CRC Handbook of Chemistry & Physics., 14, 30-32 (1997).
Tikhonov, V. P., A. A. Temnov, V. A. Kushnir, T. V. Sirota, E. G. Litvinova, M.V. Zakharchenko, and M. N. Kondrashova, “Complex Therapeutical Effect of Ionized Air:Stimulation of the Immune System and Decrease in Excessive Serotonin. H2O2 as a Link between the Two Counterparts,” IEEE TRANSACTIONS ON PLASMA SCIENCE., 32, 1661-1667 (2004).
Tom, G., Poll, M. F., Galla, J., Berrier, J., “The Influence of Negative Air Ions on Human Performance and Mood”, Human Factors, 23, 633-636 (1981).
Tong, J., L. Li, N. J. Chu, H. X. Jin, Q. Tang, Q. Lu, L. N. Sun, D. F. Jin, H. L. Ge, X. Q. Wang, ” Optimization for field emission from carbon nanotubes array by Fowler–Nordheim equation” Physica E., 40, 3166–3169 (2008).
Van Durme, J., J. Dewulf, W. L. C. Sysmans, H. Van Langenhove, “Efficient toluene abatement in indoor air by a plasma catalytic hybrid system”. Appl. Catal., B:Environ., 74, 161–169 (2007).
Watanabe, I., Noro, H., Ohtsuka, Y., Mano, Y., Agishi, Y.,” Physical Effects of Negative Air Ions in a Wet sauna,” Int. J. Biometeorol., 40, 107-112 (1997).
Wei, G. “Emission property of carbon nanotube with defects,” Applied Physics Letters., 89, 143111 (2006).
Wong, E. W., P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science., 277, 1971 (1997).
Wu, C. C., Grace W. M. Lee, S. Yang, K. P. Yu, C. L. Lou, “ Influence of air humidity and the distance from the source on negative air ion concentration in indoor air,” Science of the Total Environment., 370, 245–253 (2006).
Yates, A., F. B. Gary, J. I. Misiaszek, “ Air Ions: Past Problems and Future Directions,’’ Environ. Int., 12, 99-108 (1986).
Zhang, W. D., Y. Wen, W. C. Tjiu, G. Q. Xu, L. M. Gan, “Growth of vertically aligned carbon-nanotube array on large area of quartz plates by chemical vapor deposition,” Appl. Phys., A, 74, 419–422 (2002).
Zhang. Z.,Z. Sun., Yiwei. Chen., “Improve the field emission uniformity of carbon nanotubes treated by ball-milling process,” Appl. Surface Science., 253, 3292-3297 (2007).
Zheng, X., G. H. Chen, Z. Li, S. Deng, N. Xu, “Quantum-Mechanical Investigation of Field-Emission Mechanism of a Micrometer-Long Single-Walled Carbon Nanotube,” Phys. Rev. Lett., 92, 106803 (2004).
http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch8.htm
www.pratice.net/t_remark.asp?id=10785
行政院環保署室內空氣品質資訊網http://aqp.epa.gov.tw/iaq/page4-1.htm
張坤樹、張永義、劉家壽等,”正電症候群的診察與防治。第六屆「身、心、靈科學」”學術研討會論文集,台北、台灣,53-61 (2002).
蔡淑慧,拉曼光譜在奈米碳管檢測上之應用 奈米通訊第十二卷第二期,(2005).
成會明編著,張勁燕校訂,陳佩芬編輯,奈米碳管,五南圖書出版股份有限公司
2004年2月
陳文照•曾春風•游信和 譯,張柳春 總校閱,工程材料-材料科學基礎篇,WILEY 2008年6月
吳致呈,空氣負離子控制室內空氣污染物之研究,博士論文,台大環境工程研究所,2006
顏麗凰,利用水滴破碎產生空氣負離子之研究,碩士論文,台大環境工程研究所,2004
廖弓普,奈米碳管放電產生空氣負離子微型裝置之研究,碩士論文,台大環境工程研究所,2007
徐孟琮,奈米碳管特性對放電產生空氣負離子影響之研究,碩士論文,台大環境工程研究所,2008
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44113-
dc.description.abstract本研究探討奈米碳管場發射特性應用在負極放電產生空氣負離子的影響,並且探討發展微型空氣清淨裝置的可行性。實驗主要探討包含奈米碳管長徑比、奈米碳管密度多寡、奈米碳管層數、金屬材質、金屬長徑比、金屬針尖曲率對放電電壓之影響、產生空氣負離子之穩定度和有效作用空間及監測可能產生之臭氧副產物。奈米碳管長徑比愈大,其場增強效應(enhanced field emission)愈大,所以放電電壓愈低。以長徑比1666.66~5000的多壁奈米碳管做為放電電極時極限電壓值僅需要0.5 kV,首次突破至1.0 kV以下。
奈米碳管陣列因規則排列能降低屏蔽效應(screening effect),在碳管內部間距為碳管長度的十分之一(陣列碳管密度為1~2×109 CNTs/cm2)時會有最好的場發射效果。奈米碳管長徑比的影響大於奈米碳管層數之影響,長徑比較大的奈米碳管不論其層數,皆具有較低的放電電壓。在相同電壓下,奈米碳管長徑比愈大,負極放電產生空氣負離子濃度之穩定度愈好。
利用模擬脈衝放電產生空氣負離子的穩定度遠高於連續放電。關閉電場30sec後再重新開啟電場一分鐘的方式可讓空氣負離子濃度維持在4.0×105 ions/cm3以上超過30分鐘。空氣負離子濃度隨空間的增加並無明顯影響,對放電電壓幾乎不影響。在沾附奈米碳管的銅電極上,於電壓0.5 kV即可達至空氣負離子極限偵測範圍,並且無臭氧的產生,直到放電電壓為2.5 kV時,才開始產生臭氧增加濃度0.2 ppb,此數值遠低於室內空氣品質建議值0.03 ppm,故不會有臭氧污染問題。
zh_TW
dc.description.abstractThis study investigated the traits of field emission effect of carbon-nanotubes (CNTs) on generation of negative air ions (NAIs) by negative electric discharging, and the feasibility of developing a microscale air cleaner. The research evaluated the effect of the aspect ratio of CNTs, density of the CNTs, single-wall and multi-wall CNTs and double-wall CNTs, metal material, metal aspect ratio, and metal needle-point curvature on the discharging voltage of CNTs. It also evaluated the stability and the effective space of the generation of NAIs by using CNTs with negative electric discharging, and studied the possible generation of ozone. The results show that enhanced field emission gets bigger when the aspect ratio of CNTs increased, so that discharging voltage gets lower. The limited voltage value of multi-wall CNTs(aspect ratio ranged from 1666.66 to 5000) required only 0.5 kV when they used as discharging electrode. That was the first time the value lower than 1.0 kV.
CNTs array can reduce screening effect because of regular alignment and also reduce discharging voltage effectively. The field emission from CNTs array could be optimized with the inter-tube distance of 10th of the height(CNTs array with density of 1~2×109 CNTs/cm2). No matter the number of layers of CNTs, the CNTs with greater aspect ratio have lower discharging voltage. At same discharging voltage, the stability of NAIs by negative electric discharging gets higher when the aspect ratio of CNTs increases.
And we find out that the stability of generate NAIs by imitate pulsed corona is much better than continued discharging. If we close the electric field for 30sec and restart it for 1 minutes. We could keep the concentration of NAIs over than 4.0×105ions/cm3 for 30minutes. The NAIs concentration did not change with increasing space. CNTs on copper electrode can reach detecting limit range of NAIs at discharging voltage of 0.5kV without generation of ozone. At discharging voltage of 2.5 kV, CNTs on copper electrode begin to generate ozone at 0.2 ppb, this value is much lower than the Indoor Air Quality value (0.03 ppm), so we don’t have to worry about the problem of ozone pollution.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:40:30Z (GMT). No. of bitstreams: 1
ntu-98-R96541132-1.pdf: 5915433 bytes, checksum: dcf10bc4c6ef6618366bba0b6b3b5deb (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 i
Abstract iii
圖目錄 V
表目錄 XI
符號說明 XII
第 前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究內容與方法 2
第 2 章 文獻回顧 5
2-1 空氣離子 5
2-1-1 空氣負離子之物理特性 6
2-1-2 空氣負離子之化學特性 8
2-1-3 空氣負離子對室內空氣品質之影響 11
2-1-4 空氣負離子對人體健康之影響 13
2-2 奈米碳管之發現 17
2-3 奈米碳管之結構與拉曼光譜 18
2-3-1 單壁奈米碳管 18
2-3-2 多壁奈米碳管 22
2-3-3 拉曼光譜 23
2-4 奈米碳管之製程 25
2-4-1 電弧放電法 25
2-4-2 雷射汽化法 26
2-4-3 化學氣相沉積法 27
2-5 奈米碳管之特性 29
2-5-1 奈米碳管之表面特性 29
2-5-2 奈米碳管之機械特性 31
2-5-3 奈米碳管之電磁特性 33
2-5-4 奈米碳管之場發射特性 35
2-6 奈米碳管之應用與發展 39
第 3 章 實驗設備與方法 41
3-1 實驗系統概述 41
3-2 實驗設備與儀器 44
3-2-1 空氣負離子產生設備 44
3-2-1-1 高壓電源供應器 44
3-2-1-2 放電系統 45
3-2-1-3 乾淨空氣供應系統 45
3-2-1-4 空氣離子反應器 46
3-2-2 偵測設備與相關儀器 46
3-2-2-1 空氣負離子偵測器 46
3-2-2-2 臭氧偵測器 47
3-3 實驗方法 48
3-3-1 起始與極限放電電壓 48
3-3-2 金屬電極特性 48
3-3-3 奈米碳管特性 49
3-3-4 空氣負離子之有效作用空間 50
3-3-5 空氣負離子之穩定性 50
3-3-6 奈米碳管放電產生臭氧 51
第 4 章 結果與討論 53
4-1 背景實驗 53
4-1-1 實驗室室內空氣負離子濃度 53
4-1-2 空氣流量對空氣負離子濃度之影響 55
4-2 金屬電極放電電壓與空氣負離子濃度之關係 58
4-2-1 不同電極材質對放電電壓之影響 58
4-2-2 金屬電極針尖曲率對放電電壓之影響 64
4-2-2-1鉬電極針尖曲率對放電電壓之影響 64
4-2-2-2 鋅電極針尖曲率對放電電壓之影響 65
4-2-3 金屬電極長徑比對放電電壓之影響 69
4-2-3-1 鉬電極長徑比對放電電壓之影響 69
4-2-3-2 鋅電極長徑比對放電電壓之影響 71
4-3 奈米碳管特性對放電電壓之影響 73
4-3-1 不同層數奈米碳管對放電電壓之影響 73
4-3-2 奈米碳管長徑比對放電電壓之影響 76
4-3-3 奈米碳管密度對放電電壓之影響 82
4-3-4 奈米碳管在不同基體上對放電電壓之影響 87
4-3-4-1在不同長徑比基體上對放電電壓之影響 87
4-3-4-2在不同針尖曲率基體上對放電電壓之影響 90
4-4 奈米碳管放電產生空氣負離子之穩定度 93
4-4-1奈米碳管長徑比對放電穩定度之影響 93
4-4-2奈米碳管密度對放電穩定度之影響 101
4-4-3模擬脈衝放電對放電穩定度之影響 104
4-5 空氣負離子有效作用空間 109
4-6 奈米碳管放電產生臭氧之偵測 113
第 5 章 結論與建議 119
5-1 結論 119
5-2 建議 121
參考文獻 123

圖目錄
圖 1 1研究流程圖 4
圖 2 1利用電暈放電產生空氣負離子化學反應演化示意圖 10
圖 2 2碳之同素異形體圖 17
圖 2 3石墨烯片捲曲而成的單壁奈米碳管 18
圖 2 4石墨烯片層映射到奈米碳管之示意圖 21
圖 2 5多壁奈米碳管TEM圖 22
圖 2 6單壁奈米碳管不同振動模式對應的拉曼光譜 24
圖 2 7電弧放電法裝置示意圖 26
圖 2 8雷射汽化法裝置示意圖 27
圖 2 9化學氣相沉積法裝置圖 28
圖 2 10奈米碳管之穿透式電子顯微鏡(TEM)圖 30
圖 2 11場效應電晶體結構示意圖 34
圖 2 12能階分佈示意圖 38
圖 3 1實驗流程圖 42
圖 3 2實驗系統圖 43
圖 4 1實驗室內濕度30~40%空氣負離子濃度隨時間之分佈圖 54
圖 4 2實驗室內濕度60~70%空氣負離子濃度隨時間之分佈圖 54
圖 4 3通入乾淨空氣2.714 Lpm之空氣負離子濃度隨時間分佈圖 56
圖 4 4通入乾淨空氣2.975 Lpm之空氣負離子濃度隨時間分佈圖 56
圖 4 5通入乾淨空氣5.244 Lpm之空氣負離子濃度隨時間分佈圖 57
圖 4 6鉬、銅極限放電電壓與空氣負離子濃度之關係圖 62
圖 4 7鉬、銅起始放電電壓與空氣負離子濃度之關係圖 62
圖 4 8鈦、鋅極限放電電壓與空氣負離子濃度之關係圖 63
圖 4 9鈦、鋅起始放電電壓與空氣負離子濃度之關係圖 63
圖 4 10鉬針尖曲率直徑0.01mm、0.05mm、0.5mm極限放電電壓與空氣負離子濃度之關係圖 67
圖 4 11鉬針尖曲率直徑0.01mm、0.05mm、0.5mm起始放電電壓與空氣負離子濃度之關係圖 67
圖 4 12鋅針尖曲率直徑0.01mm、0.05mm、0.5mm極限放電電壓與空氣負離子濃度之關係圖 68
圖 4 13鋅針尖曲率直徑0.01mm、0.05mm、0.5mm起始放電電壓與空氣負離子濃度之關係圖 68
圖 4 14鉬長徑比40、25極限放電電壓與空氣負離子濃度之關係圖 70
圖 4 15鉬長徑比40、25起始放電電壓與空氣負離子濃度之關係圖 70
圖 4 16鋅長徑比40、25極限放電電壓與空氣負離子濃度之關係圖 72
圖 4 17鋅長徑比40、25起始放電電壓與空氣負離子濃度之關係圖 72
圖 4 18銅線沾附不同層數CNTs之極限電壓與空氣負離子濃度之關係圖 75
圖 4 19銅線沾附不同層數CNTs之起始電壓與空氣負離子濃度之關係圖
75
圖 4 20高達光多壁奈米碳管長徑比33.33~166.66之SEM圖 79
圖 4 21高達光單壁奈米碳管長徑比666.66~3333.33之TEM圖 79
圖 4 22新奈多壁奈米碳管長徑比1666.66~5000之SEM圖 80
圖 4 23新奈多壁奈米碳管拉曼光譜圖 80
圖 4 24銅線沾附不同長徑比CNTs之極限電壓與空氣負離子濃度之關係圖 81
圖 4 25銅線沾附不同長徑比CNTs之起始電壓與空氣負離子濃度之關係圖 81
圖 4 26高達光低密度陣列多壁奈米碳管之SEM圖 83
圖 4 27高達光高密度陣列多壁奈米碳管之SEM圖 83
圖 4 28低密度與高密度陣列奈米碳管極限放電電壓與空氣負離子濃度之關係圖 86
圖 4 29低密度與高密度陣列奈米碳管起始放電電壓與空氣負離子濃度之關係圖 .86
圖 4 30奈米碳管在鉬電極長徑比25、40上之極限放電電壓與空氣負離子濃度關係圖 89
圖 4 31奈米碳管在鉬電極長徑比25、40上之起始放電電壓與空氣負離子濃度之關係圖 89
圖 4-32新奈多壁奈米碳管在鉬電極針尖曲率直徑0.05mm、0.5mm上之極限放電電壓與空氣負離子濃度關係圖 92
圖 4 33新奈多壁奈米碳管在鉬電極針尖曲率直徑0.05mm、0.5mm上之起始放電電壓與空氣負離子濃度關係圖 92
圖 4 34多壁奈米碳管長徑比333.33~1333.33在電壓0.6kV下空氣負離子濃度與時間之關係圖 98
圖 4 35單壁奈米碳管長徑比666.66~1333.33在電壓0.6kV下空氣負離子濃度與時間之關係圖 98
圖 4 36單壁奈米碳管長徑比666.66~3333.33在電壓0.6kV下空氣負離子濃度與時間之關係圖 98
圖 4 37多壁奈米碳管長徑比333.33~1333.33在電壓1.0kV下空氣負離子濃度與時間之關係圖 99
圖 4 38單壁奈米碳管長徑比666.66~1333.33在電壓1.0kV下空氣負離子濃度與時間之關係圖 99
圖 4 39單壁奈米碳管長徑比666.66~3333.33在電壓1.0kV下空氣負離子濃度與時間之關係圖 99
圖 4 40新奈多壁奈米碳管長徑比1666.66~5000在電壓0.4kV下空氣負離子濃度與時間之關係圖 100
圖 4 41新奈雙壁奈米碳管長徑比400~6000在電壓0.5kV下空氣負離子濃度與時間之關係圖 100
圖 4 42陣列奈米碳管(低密度)在電壓6.7kV下空氣負離子濃度與時間之關係圖 103
圖 4 43陣列奈米碳管(高密度)在電壓6.7kV下空氣負離子濃度與時間之關係圖 103
圖 4 44新奈雙壁奈米碳管長徑比400~6000在電壓0.5kV下連續放電產生空氣負離子之濃度與時間之關係圖 107
圖 4 45新奈雙壁奈米碳管長徑比400~6000在電壓0.5kV下模擬脈衝放電產生空氣負離子之濃度與時間之關係圖(關閉電場10sec) 107
圖 4 46新奈雙壁奈米碳管長徑比400~6000在電壓0.5kV下模擬脈衝放電產生空氣負離子之濃度與時間之關係圖(關閉電場20sec) 108
圖 4 47新奈雙壁奈米碳管長徑比400~6000在電壓0.5kV下模擬脈衝放電產生空氣負離子之濃度與時間之關係圖(關閉電場30sec) 108
圖 4 48新奈雙壁奈米碳管長徑比400~6000在電壓0.5kV下模擬脈衝放電產生空氣負離子之濃度與時間之關係圖(關閉電場40sec) 108
圖 4 49單壁奈米碳管長徑比666.66~1333.33在不同作用空間下之起始電壓與空氣負離子濃度關係圖 …111
圖 4 50單壁奈米碳管長徑比666.66~1333.33在不同作用空間下之極限電壓與空氣負離子濃度關係圖 ..111
圖 4 51單壁奈米碳管長徑比666.66~3333.33在不同作用空間下之起始電壓與空氣負離子濃度關係圖… 112
圖 4 52單壁奈米碳管長徑比666.66~3333.33在不同作用空間下之極限電壓與空氣負離子濃度關係圖 112
圖 4 53新奈多壁奈米碳管在銅線上放電電壓、空氣負離子濃度與臭氧濃度增加量關係圖 116
圖 4 54新奈多壁奈米碳管在銅線上放電電壓與臭氧濃度增加量關係圖 116
圖 4 55高達光多壁奈米碳管在銅線上放電電壓、空氣負離子濃度與臭氧濃度增加量關係圖 117
圖 4 56高達光多壁奈米碳管在銅線上放電電壓與臭氧濃度增加量關係圖 117


表目錄
表 2 1不同空氣負離子濃度對生物體之影響 16
表 2 2材料機械強度比照表 32
表 4 1放電電壓與金屬材質物理特性比較表 61
表 4 2高達光陣列奈米碳管之規格表 82
表 4 3臭氧室內品質建議值 115
dc.language.isozh-TW
dc.title奈米碳管場發射特性對放電產生空氣負離子影響之研究zh_TW
dc.titleThe effect of field emission traits of carbon-nanotubes on the generation of negative air ionsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李崇德,吳致呈
dc.subject.keyword空氣負離子,場發射,奈米碳管,脈衝放電,zh_TW
dc.subject.keywordnegative air ions (NAIs),field emission,carbon-0nanotubes,pulsed corona,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2009-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
5.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved