Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44079
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏溪成(Shi-Chern Yen)
dc.contributor.authorTing-Yueh Chenen
dc.contributor.author陳庭悅zh_TW
dc.date.accessioned2021-06-15T02:39:01Z-
dc.date.available2012-08-14
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-12
dc.identifier.citationAlegria Y., F. Liendo, O. Nunez, ” On the Fenton degradation mechanism. The role of oxalic acid.” Arkivoc, 10, 538-549, (2003)
Allen R.L.M., “Colour Chemisry”, Appleton Century-Craft, New York, (1971)
Bard A.J., and L.R. Faulkner, “Electrochemical Methods- Fundamentals and Applications”, U. S. A., Wiley, 2nd , 749-751, (2001)
Bauer R., G. Waldner, H. Fallmann, S. Hager, M. Klare, T. Krutzler, S. Malato, P. Maletzky, ” The photo-fenton reaction and the TiO2/UV process for waste water treatment − novel developments”, Catalysis Today, 53, 131–144, (1999)
Bigda RJ. “Consider Fenton's chemistry for wastewater treatment” Chemical Engineering Progress, 12, 62-66, (1995)
Brillas E., R.M. Bastida, and E. Llosa, “Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode”, Journal of the Electrochemical Society, 142, 1733-1741, (1995)
Brillas E., E. Mur, J. Casado, “Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode”, Journal of the Electrochemical Society, 143 (3), L49-L53, (1996)
Brillas E., E. Mur, R. Sauleda, L. Sánchez, J. Peral, X. Domenech, “Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photo-electro-Fenton processes”, Appl Catal B-Environ,16, 31-42, (1998)
Brillas E., J.C. Calpe and J. Casado, “Mineralization of 2,4-D by advanced electrochemical oxidation processes”, Water Research, 34, 2253-2262, (2000)
Brillas E., J. Casado, “Aniline degradation by Electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment”, Chemosphere, 47, 241-248, (2002)
Brillas E., MA. Baños, JA. Garrido, “Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton”, Electrochim Acta, 48, 1697-1705, (2003)
Brillas E., B. Boye, I. Sirés, J.A. Garrido, R.M. Rodríguez, C. Arias, P.L. Cabot and C. Comninellis, “Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode”, Electrochimica Acta, 49, 4487-4496, (2004)
Comparelli R., E. Fanizza, M.L. Curri,, P.D. Cozzoli, G. Mascolo, R. Passino and A. Agostiano, “Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates “, Applied Catalysis B: Environmental, 55, 81-91, (2005)
Crap O., C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide”, Progress in Solid State Chemistry, 32, 33-177, (2004)
Dai Q., D. Wang and C. Yuan, “Novel method for detecting •OH radicals generated by photoexcited nanoparticles“, Supramolecular Science ,5 , 469-473, (1998)
Di Paola A., V. Augugliaro, L. Palmisano, G. Pantaleo, E. Savinov, “Heterogeneous photocatalytic degradation of nitrophenols”, Journal of Photochemistry and Photobiology A: Chemistry, 155, 207–214, (2003)
Doeuff S., M. Henry, C. Sanchez, and J. Livage, “Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid”, Journal of Non-Crystalline Solids, 89, 206-216, (1987)
Faust BC., J. Hoigne, ” Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain”, Atmos Environ, 24, 79-89, (1990)
Fenton H.J.H., ”Oxidation of tartaric acid in the presence of iron.” Journal of the Chemical Society, 65, 899-910, (1984)
Flox C., S. Ammar, C. Arias, E. Brillas, A.V. Vargas-Zavala, R. Abdelhedi, “Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium” Applied Catalysis B: Environmental, 67, 93–104, (2006)
Fujishima A., X. Zhang, D.A. Tryk, “TiO2 photocatalysis and surface phenimena”, Suface Science Reports, 63, 515-582, (2008)
Galindo C., P. Jacques, A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2 Comparative mechanistic and kinetic investigations”, Journal of Photochemistry and Photobiology A: Chemistry, 130, 35–47, (2000)
Glaze W.H., J.W. Kang, D.H. Chapin, ” Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation”, Ozone: Science and Engineering, vol. 9, Issue 4, 335-352, (1987)
Goi A., Y. Veressinina, M. Trapido, “Degradation of salicylic acid by Fenton and modified Fenton treatment”, Chemical Engineering Journal, 143 (1-3), 1-9, (2008)
Gözmen B., M.A. Oturan, N. Oturan, and O. Erbatur, “Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent”, Environmental Science and Technology, 37, 3716-3723, (2003)
Grätzel M., “Photoelectrochemical cells”, Nature, 414, 338-344, (2001)
Guinea E., C. Arias, P.L. Cabot, J.A. Garrido, R.M. Rodríguez, F. Centellas and E. Brillas, “Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide”, Water Research, 42, 499-511, (2008)
Guo B., Z. Liu, L. Hong and H. Jang, “Sol gel derived photocatalytic porous TiO2 thin films”, Surface & Coatings Technology, 198, 24– 29, (2005)
Herrmann J.M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants”, Catalysis Today, 53, 115-129, (1999)
Hirakawa T., K. Yawata, Y. Nosaka, “Photocatalytic reactivity for and OH• radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition”, Applied Catalysis A: General, 325, 105-111, (2007)
Hirakawa T. and Y. Nosaka “Properties of and OH• Formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions”, Langmuir, 18, 3247-3254, (2002)
Hoffman M. R., S. T. Martin, W. Choi, D.W. Bahnemann, “Environmental applications of semiconductor photocatalysis”, Chemical Review, 95, 69-95, (1995)
Holze R. and W. Vielstich, “Kinetic of oxygen reduction at porous teflon-bonded fuel cell electrodes”, Journal of the Electrochemical Society, 131, 2298-2303, (1984)
Hsiao Y.L. and K. Nobe, “Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton's reagent”, Journal of Applied Electrochemistry, 23, 943-946, (1993)
Huang CP., C. Dong, Z. Tang, “Advanced chemical oxidation: its present role and potential future in hazardous waste treatment” Waste Manage, 13, 361-377, (1993)
Jain R. and M. Shrivastava, “Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide”, Journal of Hazardous Materials, 152, 216-220, (2008)
Janzen E.G., Y. Kotake, R.D. Hinton, “Stabilities of hydroxyl radical spin adducts of PBN-type spin traps”, Free Radical Biology and Medicine, 12, 169-173, (1992)
Kato K. and K.I. Niihara, “Roles of polyethylene glycol in evolution of nanostructure in TiO2 coatings”, Thin Solid Films, 298, 76-82, (1997)
Kavitha V. and K. Palanivelu, “The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol”, Chemosphere, 55, 1235-1243, (2004)
Kim S. and A. Vogelpohl, “Degradation of organic pollutants by the photo-Fenton process”, Chem Eng Technol, 21, 187-197, (1998)
Koelsch M., S. Cassaignon, J.F. Guillemoles, J.P.Jolivet, “Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol-gel method”, Thin Solid Films, 403-404, 312-319, (2002)
Legan R.W., “Ultraviolet light takes on CPI role”, Chemical Engineering (New York), 89, 95-100, (1982)
Legrini O., E. Oliveros, A.M. Braun, “Photochemical processes for water treatment” Chemical Reviews, 93 (2), 671-698, (1993)
Leng W.H., W.C. Zhu, J. Ni, Z. Zhang, J.Q. Zhang, C.N. Cao, “Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at cathode”, Applied Catalysis A: General, 300, 24-35, (2006)
Levin E.M. and L.E. Alexander, “Phase Diagrams for Ceramists”, The American Ceramic Society, Inc., USA., 76, Figure 4258, (1975)
Li X.Z. and H.S. Liu, “Development of an E-H2O2/TiO2 Photoelectrocatalytic Oxidation System for Water and Wastewater Treatment”, Environmental Science and Technology, 39, 4614-4620, (2005)
Linsebigler A.L., G. Lu, J.T. Yates Jr., “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results”, Chemical Reviews, 95, 735-758, (1995)
Lipczynskakochany E., “Novel method for a photocatalytic degradation of 4-nitrophenol in homogeneous aqueous-solution”, Environmental Technology, 12, 87-92, (1991)
Ma Y., J.B. Qiu, Y.A. Cao, Z.S. Guan, J.N. Yao, “Photocatalytic activity of TiO2 films grown on different substrate”, Chemosphere, 44, 1087-1092, (2001)
Maletzky P. and R. Bauer, “The Photo-Fenton method - Degradation of nitrogen containing organic compounds”, Chemosphere, 37, 899-909, (1998)
Mason T.J., J.P. Lorimer, D.M. Bates and Y. Zhao, “Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor”, Ultrasonics-Sonochemistry, 1, S91-S95, (1994)
Nakada N., T. Tanishima, H. Shinohara, K. Kiri, H. Takada, “Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment”, Water Research, 40, 3297-3303, (2006)
Nosaka Y., M. Kishimoto, J. Nishino, “Factors governing the initial process of TiO2 photocatalysis studied by means of in-situ electron spin resonance measurements”, Journal of Physical Chemistry B, 102, 10279-10283, (1998)
Ohtani B., Y. Ogawa, S.I. Nishimoto, “Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions”, Journal of Physical Chemistry B, 101, 3746-3752, (1997)
Ollis D.F., E. Pelizzetti, N. Serpone, “Photocatalyzed destruction of water contaminants”, Environmental Science and Technology, 25, 1522-1529, (1991)
Oturan M.A., N. Oturan, C. Lahitte, S. Trevin, “Production of hydroxyl radicals by electrochemically assisted Fenton's reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol”, Journal of Electroanalytical Chemistry, 507, 96-102, (2001)
Panizza M. and G. Cerisola, “Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air”, Electrochimica Acta, 54, 876-878, (2008)
Panizza M. and G. Cerisola, “Electro-Fenton degradation of synthetic dyes”, Water Research 43, 339-344, (2009)
Pignatello JJ., E. Oliveros, A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry.” Critical Reviews in environmental Science and Technology, 36, 1-84, (2006)
Qiang ZM., JH. Chang, CP. Huang, “Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions”, Water Res, 36, 85-94, (2002)
Qiang ZM., JH. Chang, CP. Huang, “Electrochemical regeneration of Fe2+ in Fenton oxidation processes”, Water Res, 37, 1308-1319, (2003)
Ravichandran L., K. Selvam, M. Swaminathan, “Photo-Fenton defluoridation of pentafluorobenzoic acid with UV-C light”, Journal of Photochemistry and Photobiology A: Chemistry, 188, 392-398, (2007)
Safarzadeh A., JR. Bolton, SR. Cater, “Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water”, Water Res, 31, 787-798, (1997)
Saha M.S., Y. Nishiki, T. Furuta, T. Ohsaka, “Electrolytic synthesis of peroxyacetic acid using in situ generated hydrogen peroxide on gas diffusion electrodes”, Journal of the Electrochemical Society, 151, D93-D97, (2004)
Schubert U., “Chemical modification of titanium alkoxides for sol–gel processing”, Journal of Materials Chemistry, 15, 3701–3715, (2005)
Sirés I., C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodríguez, E. Brillas, “Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton”, Chemosphere, 66, 1660–1669, (2007)
Skoog D. and D.M. West, “Fundamentals of analytical chemistry”, CBS College Publishing, 4th, 381-382 and 669-676, (1982)
Solarska R., I. Rutkowska, R. Morand, J. Augustynski, “Photoanodic reaction occurring at nanostructured titanium dioxide film”, Electrochimica Acta, 51, 2230-2236, (2006)
Sumita T., T. Yamaki, S. Yamamoto and A. Miyashita, “Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films”, Applied Surface Science, 200, 21-26, (2002)
Sun B. and P.G. Smirniotis, “Interaction of anatase and rutile TiO2 particles in aqueous photooxidation”, Catalysis Today, 88, 49–59, (2003)
Sun L. and J.R. Bolton, “Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions”, Journal of Physical Chemistry, 100, 4127-4134, (1996)
Sundstrom D.W., B.A. Weir, and H.E. Klei, “Destruction of Aromatic Pollutants by UV Light Catalyzed Oxidation with Hydrogen Peroxide”, Environmental Progress, 8, 6-11, (1989)
Tada H. and M. Tanaka, “ Dependence of TiO2 photocatalytic activity upon its film thickness”, Langmuir, 13, 360-364, (1997)
van de Krol R., A. Goossens, J. Schoonman, “Mott-Schottky Analysis of Nanometer-Scale Thin-Film Anatase TiO2”, Journal of Electrochemical Soc., 144, 1723-1727, (1997)
Wang G., X. Tang, J. Ma, et al., “Sealing interfaces of pin in colour picture tube”, Journal of Materials Science and Technology, 12, 78-80, (1996)
Weir B.A. and D.W. Sundstrom, “Destruction of trichloroethylene by UV light-catalyzed oxidation with hydrogen peroxide”, Chemosphere, 27, 1279-1291, (1993)
Yue P.L., “Modelling of kinetics and reactor for water purification by photo-oxidation”, Chemical Engineering Science, 48, 1-11, (1993)
Zepp R.G., B.C. Faust, J. Hoigné, “Hydroxyl Radical Formation in Aqueous Reactions (pH 3-8) of Iron(II) with Hydrogen Peroxide: The Photo-Fenton Reaction”, Environmental Science and Technology, 26, 313-319, (1992)
Zuo, Y. and J. Hoignè, “Formation of hydrogen peroxide and depletion of oxalic acid on atmospheric water by photolysis of iron(III)-oxalato compounds”, Environ. Sci. Technol., 26, 4-22, (1992)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44079-
dc.description.abstract在廢水處理中以高級氧化程序成效最佳,依據不同的反應機制分類,其中以Fenton程序與光催化反應應用最為廣泛。本研究將光催化反應與Fenton程序結合,以二氧化鈦薄膜電極為陽極,二氧化鈦受UV光照射後躍遷至導電帶的光電子會導入陰極中再對氧氣進行還原反應,還原反應生成過氧化氫擴散至反應系統中與亞鐵離子進行典型的Fenton程序。由於反應過程中持續受到UV光的影響,所以反應機制包含photo-Fenton程序,將鐵離子還原成亞鐵離子,如此一來,反應能持續進行直到有機物被完全分解。
以溶膠-凝膠法製備二氧化鈦薄膜電極,由SEM分析得知表面型態;XRD分析其晶型結構,再以Debye-Scherrer方程式計算出粒徑大小;XPS圖譜得知二氧化鈦與ITO玻璃之間的吸附作用與其表面與氧原子鍵結方式;UV-Vis分析其吸收度並估算出能隙;最後再由I-V曲線得知當提供正偏壓光電流效應。
水楊酸在醫療與合成工業上用途廣泛所以產生的廢水也相當可觀。本研究以0.05mM水楊酸為有機污染物進行降解反應。反應系統使用TiO2/ITO陽極、PTFE-碳布為陰極分別討論加入不加入鐵離子、與加入亞鐵離子、鐵離子的系統(AT_CC、AT_CC_Fe2+與AT_CC_Fe3+系統),研究發現以AT_CC_Fe2+系統的反應性最佳。接著再對影響系統因素一一做探討,例如起始pH值、亞鐵濃度、光照強度、氧氣進
料流量等影響。另外也討論額外在系統中施加電流與反應系統之間的關係。
zh_TW
dc.description.abstractAdvanced oxidation process is the best method for wastewater treatment. According to different classification of reaction mechanisms, Fenton process and photocatalytic reaction have most widely applications. In this study, photocatalytic reaction was combined with Fenton process. Titanium dioxide thin film electrode is used to be the anode, and photoelectrons on TiO2 surface will be irradiated by UV light and then transit to the conductive band to move to cathode to reduce oxygen in the cathode. When the reduction reaction occurred, hydrogen peroxide was produced and it diffused to the system to react with ferrous ion in the solution, which is called Fenton process. As the whole reaction process continued to be irradiated by UV light, the reaction mechanism contains the photo-Fenton process. In this way, ferriciron ions will
be reduced to ferrous ions, and the organism will be decomposed completely.
Titanium dioxide thin film electrode was prepared by sol-gel method. The surface morphology was developed by SEM. We also analyzed crystal structure by XRD and made use of Debye-Scherrer equation to calculate the particle size of Titanium dioxide. Adsorption and bonding way with oxygen atoms between Titanium dioxide thin film and ITO glass were developed by XPS analysis. Absorbance data was obtained by UV-vis analysis and the energy gap was estimated. Finally, the I-V curve showed the photocurrent effect when a positive voltage was added to the system.
Salicylic acid generated much wastewater because of its popular applications of medical treatment and synthetic industry. We chose 0.05mM Salicylic acid as the organic pollutant and proceeded a degradation reaction. Reaction systems are AT_CC, AT_CC_Fe2+ and AT_CC_Fe3+, which the best one is AT_CC_Fe2+. Then we discussed some factors and how they affect the systems which were mentioned above. The factors, for example, are the initial pH value, the concentration of Fe2+, light intensity, and the flux of feeding oxygen. Finally, the relationship between extra added current and reaction system was discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:39:01Z (GMT). No. of bitstreams: 1
ntu-98-R96524028-1.pdf: 4252295 bytes, checksum: 67aa4525437dab8a0cbd3f782789b1b5 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
符號 xiii
第一章 序論 1
1-1 研究緣起 1
1-2 研究動機與目的 3
第二章 文獻回顧 5
2-1高級氧化程序 5
2-2 Fenton 程序 8
2-2.1 Classical Fenton程序 8
2-2.2 Electro-Fenton程序 11
2-2.3 Photo-Fenton程序 13
2-3 光催化程序 15
2-3.1 二氧化鈦光觸媒 18
2-3.2過氧化氫 23
第三章 實驗 26
3-1 實驗藥品與儀器 26
3-2合成二氧化鈦薄膜 28
3-2.1玻璃基材的清洗 28
3-2.2溶膠-凝膠法(sol-gel method) 29
3-2.3聚乙二醇(Polyethylene Glycol, PEG)影響 30
3-2.4鍍膜方式-旋轉塗佈法 31
3-2.5實驗合成步驟如下: 31
3-3 光化學反應 33
3-3.1 光化學反應裝置 33
3-3.2水楊酸濃度測定 35
3-3.4 過氧化氫濃度測定 38
3.3-5 動力學分析 39
3-4 二氧化鈦性質鑑定 42
3-4.1 X光繞射分析 42
3-4.2 掃描式電子顯微技術 43
3-4.3 紫外光-可見光分析 43
3-4.4 X光光電子能譜 45
3-4.5 熱重分析法 46
3-4.6電化學I-V曲線與OCP分析 46
3-5 實驗符號意義 48
第四章 結果與討論 49
4-1 陽極─二氧化鈦薄膜性質 49
4-1.1 熱重分析 (TGA) 49
4-1.2結晶性與size分析 51
4-1.3 SEM表面分析 53
4-1.4 XPS分析 57
4-1.5 UV-Vis分析 60
4-1.6 I-V曲線分析 63
4-2 陰極─過氧化氫生成 65
4-2.1施加電流密度影響 65
4-2.2 氧氣流量影響 67
4-2.3起始pH值影響 68
4-2.4溫度影響 69
4-3 水楊酸降解反應背景實驗 70
4-3.1 SA揮發實驗 70
4-3.2 SA在二氧化鈦表面吸附作用 70
4-3.3 SA在碳布上的吸附作用 71
4-3.4 SA直接光解 71
4-4 AT_CC系統 74
4-4.1 反應性比較 74
4-4.2 起始pH值影響 76
4-4.3 加入亞鐵離子(Fe2+)濃度影響 79
4-4.4 加入鐵離子(Fe3+)濃度影響 84
4-4.5 Fe2+與Fe3+反應性差異 89
4-5 AT_CC_Fe2+系統 91
4-5.1 起始pH值影響 91
4-5.2 光強度影響 94
4-5.3 氧氣進料流量 98
4-5.4 溫度效應 101
4-6 施加電流反應系統 105
第五章 結論 111
參考資料 112
Appendix 120
A. Carbon Cloth 120
B. TiO2 phase 122
dc.language.isozh-TW
dc.title光輔助電化學方法之水楊酸降解反應研究zh_TW
dc.titleDegradation Treatment of Salicylic Acid by Photo-assisted Electrochemical Methoden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川(Kuo-Chuan Ho),吳永富(Yung-Fu Wu)
dc.subject.keyword高級氧化程序,光催化反應,Fenton程序,photo-Fenton程序,二氧化鈦薄膜,氧氣還原,zh_TW
dc.subject.keywordAdvanced oxidation process,photocatalytic reaction,Fenton process,photo-Fenton process,Titanium dioxide thin film,redox,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2009-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
4.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved