請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44077完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李君浩(Jiun-Haw Lee) | |
| dc.contributor.author | Wei-Feng Xu | en |
| dc.contributor.author | 徐偉峰 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:38:56Z | - |
| dc.date.available | 2014-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-12 | |
| dc.identifier.citation | [1.1] M. A. Green, “Multiple band and impurity photovoltaic solar cell: General theory and comparison to tandem solar”, Progr. Photovoltaic, 9, 137 (2001).
[1.2] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48, 183 (1986). [1.3] L. J. A. Koster, E. C. P. Smit, V. D. Mihailetchi, P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells”, Phys. Rev. B, 72, 085205 (2005). [1.4] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “2.5% efficient organic plastic solar cells”, Appl. Phys. Lett., 78, 841 (2001). [1.5] C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances”, IBM J. Res. Dev., 45, 11 (2001). [1.6] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys., 93, 3693 (2003). [1.7] M. Granström, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson and R. H. Friend, “Laminated fabrication of polymeric photovoltaic diodes”, Nature, 395, 257 (1998). [1.8] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79, 126 (2001). [1.9] T. Tsuzuki, Y. Shirota, J. Rostalski, D. Meissner, “The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment”, Sol. Energy Mater. Sol. Cells, 61, 1 (2000). [1.10] A. Yakimov and S. R. Forrest, “High photovoltage multiple heterojunction organic solar cells incorporating interfacial metallic nanoclusters”, Appl. Phys. Lett., 80, 1667 (2002). [1.11] J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers”, Appl. Phys. Lett., 86, 244102 (2005). [1.12] B. A. Gregg and M. C. Hanna, “Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation”, J. Appl. Phys., 93, 3605 (2003). [1.13] J. Nelson, J. Kirkpatrick, P. Ravirajan, “Factors limiting the efficiency of molecular photovoltaic devices”, Phys. Rev. B, 69, 035337 (2004). [1.14] R. H. Bube and A. L. Fahrenbruch, Advances in Electronics and Electron Physics, 163 (Academic, New York, 1981). [1.15] B. P. Rand and D. P. Burk, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells”, Phys. Rev. B, 75, 115327 (2007). [1.16] G.-M. Ng, E. L. Kietzke T. Kietzke, L.-W. Tan, P.-K. Liew, and F. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell”, Appl. Phys. Lett., 90, 103505 (2007). [1.17] J. Huang, G. Li, and Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process”, Adv. Mater., 20, 415 (2008). [1.18] F.-C. Chen, J.-L. Wu, K.-H. Hsieh, W.-C. Chen, S.-W. Lee, “Polymer photovoltaic devices with highly transparent cathodes”, Org. Electron., 9, 1132 (2008). [1.19] J. Hanisch, E. Ahlswede, and M. Powalla, “Contacts for semitransparent organic solar cells”, Eur. Phys. J. Appl. Phys., 37, 261 (2007). [1.20] V. Shrotriya, E. H. E. Wu, G. Li, Y. Yao, and Y. Yang, “Efficient light harvesting in multiple-device stacked structure for polymer solar cells”, Appl. Phys. Lett., 88, 064104 (2006). [1.21] R. F. Bailey-Salzman and B. P. Rand, “Semitransparent organic photovoltaic cells”, Appl. Phys. Lett., 88, 233502 (2006). [1.22] R. Koeppe, D. Hoeglinger, P. A. Troshin, R. N. Lyubovskaya, V. F. Razumov, and N. S. Sariciftci, “Organic solar cells with semitransparent metal back contacts for power window applications”, ChemSusChem, 2, 309 (2009). [2.1] Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S. R. Forrest, “Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA”, Phys. Rev. B, 54, 13748 (1996). [2.2] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79, 126 (2001). [2.3] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer”, Appl. Phys. Lett., 75, 1679 (1999). [2.4] I. G. Hill and A. Kahn, “Organic semiconductor heterointerfaces containing bathocuproine”, J. Appl. Phys, 86, 4515 (1999). [2.5] R. Mitsumoto, T. Araki, E. Ito, Y. Ouchi, K. Seki, K. Kikuchi, Y. Achiba, H. Kurosaki, T. Sonoda, H. Kobayashi, O. V. Boltalina, V. K. Pavlovich, L. N. Sidorov, Y. Hattori, N. Liu, S. Yajima, S. Kawasaki, F. Okino, and H. Touhara, “Electronic structures and chemical bonding of fluorinated fullerenes studied by NEXAFS, UPS, and vacuum-UV absorption spectroscopies”, J. Phys. Chem. A, 102, 552 (1998). [2.6] S. Ambily and C. S. Menon, “The effect of growth parameters on the electrical, optical and structural properties of copper phthalocyanine thin films”, Thin Solid Films, 347, 284 (1999). [2.7] A. T. Davidson, “The effect of the metal atom on the absorption spectra of phthalocyanine films”, J. Chem. Phys., 77, 168 (1982). [2.8] T. Stubinger and W. Brutting, “Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells”, J. Appl. Phys, 90, 3632 (2001). [2.9] ASTM, Standard test methods for electrical performance of nonconcentrator terrestrial photovoltaic modules and arrays using reference cells, E 1036-08. [2.10] ASTM, Standard test methods for determination of the spectral mismatch parameter between a photovoltaic device and a photovoltaic reference cell, E 973¬¬¬-05a. [2.11] R. McCluney, Introduction to radiometry and photometry, Artech House, Boston-London,1994. [2.12] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys., 93, 3693 (2003). [3.1] K. L. Chopra, Thin film phenomena (McGraw-Hill, New York, 1968). [3.2] E. Dobierzewska-Mozrzymas, and F. Warkusz, “Size effects in epitaxial aluminium films”, Thin Solid Films, 43, 267 (1977). [3.3] R. A. Chipman, Theory and Problems of Transmission Line, Schaum’s Outlines Series (McGraw-Hill, New York, 1968). [3.4] B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters”, J. Appl. Phys, 96, 7519 (2004). [3.5] X. Sun, R. Hong, H. Hou, Z. Fan, and J. Shao, “Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering”, Thin Solid Films, 515, 6962 (2007). [3.6] C. Charton, M. Fahland, “Optical properties of thin Ag films deposited by magnetron sputtering”, Surf. Coat. Tech., 174-175, 181 (2003). [3.7] J.J. Thomson, Proc. Camb. Philos. Soc., 11, 120 (1901). [3.8] X.-F. Liu, Y.-C. Sun, and D.-S. Liu, “The principle and application of testing sheet resistance with four-point probe techniques”, Semicond. Tech., 29, 48 (2004). [3.9] S. Yoo, B. Domercq, and B. Kippelen, “Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60”, J. Appl. Phys, 97, 103706 (2005). [3.10] Barry P. Rand, Diana P. Burk, and Stephen R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cell”, Phys. Rev. B, 75, 115327 (2007). [3.11] M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers, 2nd ed. (Oxford University Press, New York, 1999) [3.12] J. Reynaert, V. I. Arkhipov, P. Heremans, and J. Poortmans, “Photomultiplication in disordered unipolar organic materials”, Adv. Funct. Mater., 16, 784 (2006). [3.13] F.-C. Chen, J.-L. Wu, K.-H. Hsieh, W.-C. Chen, and S.-W. Lee, “Polymer photovoltaic devices with highly transparent cathodes”, Org. Electron., 9, 1132 (2008). [3.14] Q. Huang, K. Walzer, M. Pfeiffer, K. Leo, M. Hofmann, and T. Stuebinger, “Performance improvement of top-emitting organic light-emitting diodes by an organic capping layer: An experimental study”, J. Appl. Phys, 100, 064507 (2006). [3.15] B. O’Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, “Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings”, Appl. Phys. Lett., 89, 233502 (2006). [3.16] D.-S. Leem, H.-D. Park, J.-W. Kang, J.-H. Lee, J.-W. Kim, and J.-J. Kim, “Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer”, Appl. Phys. Lett., 91, 011113 (2007). [3.17] D. Cheyns, B. P. Rand, B. Verreet, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells”, Appl. Phys. Lett., 92, 243310 (2008). [4.1] L.-G. Yang, H.-Z. Chen, and M. Wang, “Optimal film thickness for exciton diffusion length measurement by photocurrent response in organic heterostructures”, Thin Solid Films, 516, 7701 (2008). [4.2] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys., 93, 3693 (2003). [4.3] G. Hernandez, Fabry-Perot interferometers. (Cambridge University Press, 1988) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44077 | - |
| dc.description.abstract | 在本論文中,我們根據copper phthalocyanine (CuPc) /fullerene (C60) /bathocuproine (BCP) 的異質接面結構製作了具有不同厚度的半透明銀陰極之有機太陽能電池。我們可以透過導電度和穿透度的比較來討論半透明銀薄膜的光電特性,而元件的電特性則由來自陽極或陰極端的照光分別被探討。藉由最佳化的金屬接觸(12.5 nm),在可見光波長範圍的平均穿透度得到~32%,而分別來自陽極和陰極端的照光下功率轉換效率可以達到0.9%和0.29%。除此之外,藉由在薄陰極上加入有機的覆蓋層(40 nm的a-naphthylphenylbiphenyl diamine (NPB) ),在人眼視覺敏感的波長542 nm附近,最大穿透度可以增加到66.3%,而來自陰極端照射的功率轉換效率則提高到0.37%。除了元件受到垂直照光的討論外,斜向和漫射光效應對於半透明有機太陽能電池的效率也同樣被研究。
另一方面,為了讓最大的光強度朝在CuPc和C60之間的分離界面移動,我們調整有機吸收層的厚度來增加進入元件內的光子之吸收機率。在分別來自陽極和陰極端的照光下,具有最佳化的CuPc和C60厚度(20 nm/30 nm)之半透明元件可以達到1.22%和0.55%的高功率轉換效率。 | zh_TW |
| dc.description.abstract | In this thesis, we demonstrated the organic photovoltaic (OPV) devices based on a copper phthalocyanine (CuPc) /fullerene (C60) /bathocuproine (BCP) hetero-junction structure with different thicknesses of Ag thin film as the semi-transparent cathode. The electrical and optical properties of the semi-transparent Ag films were discussed through the comparison of electrical conductivity and transparency. The electrical characteristics of the devices were compared under different side illuminated, from the anode side or the cathode side, respectively. By optimizing the thickness of metal contact (12.5 nm), we obtained the average transparency of ~32% over visible wavelength range and the power conversion efficiency (ηP) of 0.9% and 0.29% illuminated from the anode and cathode side, respectively. Moreover, the maximum transparency near 542 nm, which is sensitive to human eye, and ηP from top illumination can be increased up to 66.3% and 0.37%, respectively, by the introduction of organic capping layer (a-naphthylphenylbiphenyl diamine (NPB) = 40 nm) on top of thin cathode. In addition to the discussion of normal illumination, the effect of oblique and diffused light on the performance of semi-transparent OPV was also investigated.
On the other hand, we tuned the thicknesses of organic layers in order to shift the maximum intensity in optical field distribution toward the dissociation interface between CuPc/C60, which increased the absorption probability of a photon entering the semi-transparent OPV. The device with optimized thickness of CuPc and C60 (20 nm/30 nm) reached the high ηP of 1.22 % illuminated from the anode side and 0.55% illuminated from the cathode side. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:38:56Z (GMT). No. of bitstreams: 1 ntu-98-R96941083-1.pdf: 3324109 bytes, checksum: 8d226dea0a75e8d7e4f8de4984cfc50a (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Figure and Table Indices viii
Chapter 1 Introduction 1 1.1 Introduction to Organic Photovoltaic (OPV) Devices 1 1.1.1 Overview of OPV 2 1.1.2 Fundamental Principles for OPV 4 1.2 Introduction to Semitransparent OPV 8 1.3 Motivations 11 1.4 Thesis Organization 12 References 18 Chapter 2 Device Fabrication and Measurements 23 2.1 Device Fabrication of Organic Photovoltaic Cells 24 2.2 Organic material and Device Structures 26 2.3 Measurement of Photovoltaic Current-Voltage Characteristics 29 2.3.1 Standard Measurement Procedures of Photovoltaic Performances 30 2.3.2 J-V characteristics of OPVs under illumination with Oblique Angles 31 2.3.3 J-V characteristics of OPVs under diffused light illumination 32 2.4 External Quantum Efficiency 33 2.5 Transmittance and Reflectance Measurement System 34 References 44 Chapter 3 Semi-transparent Organic Photovoltaics 47 3.1 Optical Characteristics of Thin Films and Devices 48 3.1.1 Transmission, Reflection, and Absorption Spectra of Thin Films 49 3.1.2 Transmission, Reflection, and Absorption Spectra of Devices 51 3.2 Electrical Characteristics of Thin Films 55 3.3 Optimization of Cathode Layer 57 3.4 Optimized Device with an Silver Mirror underneath 64 3.5 Optimization of Organic Capping Layer 66 3.5.1 Device Performance under Normal Illumination 67 3.5.2 Device Performance under Oblique Illumination 74 3.5.3 Device Performance under Diffused Illumination 80 Reference 115 Chapter 4 Optimization of the Layer Thicknesses 119 4.1 Varying the Thickness of Donor Layer 120 4.1.1 Optical Characteristics of Devices 120 4.1.2 Device Performances 123 4.2 Varying the Thickness of Acceptor Layer 128 4.2.1 Optical Characteristics of Devices 128 4.2.2 Device Performances 131 Reference 149 Chapter 5 Summary and Future Works 151 5.1 Summary 151 5.2 Future Works 152 | |
| dc.language.iso | en | |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | 半透明銀陰極 | zh_TW |
| dc.subject | 穿透度 | zh_TW |
| dc.subject | Semitransparent Ag cathode | en |
| dc.subject | Transmittance | en |
| dc.subject | Organic Photovoltaics (OPV) | en |
| dc.title | 具有半透明陰極之有機太陽能電池的光電特性研究 | zh_TW |
| dc.title | Research on Optical and Electrical Characteristics of Organic Photovoltaic Devices with Semitransparent Cathode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁文傑(Man-Kit Leung),陳學禮(Hsuen-Li Chen),王俊凱(Juen-Kai Wang),魏茂國(Mao-Kuo Wei) | |
| dc.subject.keyword | 有機太陽能電池,半透明銀陰極,穿透度, | zh_TW |
| dc.subject.keyword | Organic Photovoltaics (OPV),Semitransparent Ag cathode,Transmittance, | en |
| dc.relation.page | 153 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
