Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44055
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧
dc.contributor.authorHsin-Da Chiuen
dc.contributor.author邱新達zh_TW
dc.date.accessioned2021-06-15T02:38:00Z-
dc.date.available2013-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-08-12
dc.identifier.citation1. Rodriguez-Boulan, E. and W.J. Nelson, Morphogenesis of the polarized epithelial cell phenotype. Science, 1989. 245(4919): p. 718-25.
2. Kottra, G. and E. Fromter, Functional properties of the paracellular pathway in some leaky epithelia. J Exp Biol, 1983. 106: p. 217-29.
3. Madara, J.L., Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol, 1987. 253(1 Pt 1): p. C171-5.
4. Bresnick, A.R., Molecular mechanisms of nonmuscle myosin-II regulation. Curr Opin Cell Biol, 1999. 11(1): p. 26-33.
5. Horowitz, A., et al., Antibodies probe for folded monomeric myosin in relaxed and contracted smooth muscle. J Cell Biol, 1994. 126(5): p. 1195-200.
6. Sellers, J.R., M.D. Pato, and R.S. Adelstein, Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem, 1981. 256(24): p. 13137-42.
7. Citi, S. and J. Kendrick-Jones, Regulation in vitro of brush border myosin by light chain phosphorylation. J Mol Biol, 1986. 188(3): p. 369-82.
8. Gallagher, P.J., et al., Molecular characterization of a mammalian smooth muscle myosin light chain kinase. J Biol Chem, 1991. 266(35): p. 23936-44.
9. Amano, M., et al., Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem, 1996. 271(34): p. 20246-9.
10. Tuazon, P.T. and J.A. Traugh, Activation of actin-activated ATPase in smooth muscle by phosphorylation of myosin light chain with protease-activated kinase I. J Biol Chem, 1984. 259(1): p. 541-6.
11. Ludowyke, R.I., et al., Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem, 1989. 264(21): p. 12492-501.
12. Kawamoto, S., et al., In situ phosphorylation of human platelet myosin heavy and light chains by protein kinase C. J Biol Chem, 1989. 264(4): p. 2258-65.
13. Turbedsky, K., T.D. Pollard, and A.R. Bresnick, A subset of protein kinase C phosphorylation sites on the myosin II regulatory light chain inhibits phosphorylation by myosin light chain kinase. Biochemistry, 1997. 36(8): p. 2063-7.
14. Kimura, K., et al., Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 1996. 273(5272): p. 245-8.
15. Koyama, M., et al., Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett, 2000. 475(3): p. 197-200.
16. Russo, J.M., et al., Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology, 2005. 128(4): p. 987-1001.
17. Turner, J.R., et al., Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol, 1997. 273(4 Pt 1): p. C1378-85.
18. Madara, J.L., R. Moore, and S. Carlson, Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol, 1987. 253(6 Pt 1): p. C854-61.
19. Turner, J.R. and J.L. Madara, Physiological regulation of intestinal epithelial tight junctions as a consequence of Na(+)-coupled nutrient transport. Gastroenterology, 1995. 109(4): p. 1391-6.
20. Philpott, D.J., et al., Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect Immun, 1998. 66(4): p. 1680-7.
21. Yuhan, R., et al., Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology, 1997. 113(6): p. 1873-82.
22. Zolotarevsky, Y., et al., A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology, 2002. 123(1): p. 163-72.
23. Scott, K.G., et al., Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology, 2002. 123(4): p. 1179-90.
24. Moriez, R., et al., Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol, 2005. 167(4): p. 1071-9.
25. Ferrier, L., et al., Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. Gastroenterology, 2003. 125(3): p. 795-804.
26. Clayburgh, D.R., et al., Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest, 2005. 115(10): p. 2702-15.
27. Fedwick, J.P., et al., Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect Immun, 2005. 73(12): p. 7844-52.
28. Stallmach, A., et al., Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn's disease. Int J Colorectal Dis, 2004. 19(4): p. 308-15.
29. Niessner, M. and B.A. Volk, Phenotypic and immunoregulatory analysis of intestinal T-cells in patients with inflammatory bowel disease: evaluation of an in vitro model. Eur J Clin Invest, 1995. 25(3): p. 155-64.
30. Blair, S.A., et al., Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest, 2006. 86(2): p. 191-201.
31. Wang, F., et al., Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol, 2005. 166(2): p. 409-19.
32. Bruewer, M., et al., Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J, 2005. 19(8): p. 923-33.
33. Utech, M., et al., Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell, 2005. 16(10): p. 5040-52.
34. Shen, L., et al., Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci, 2006. 119(Pt 10): p. 2095-106.
35. Balda, M.S., et al., Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol, 1991. 122(3): p. 193-202.
36. Sedar, A.W. and J.G. Forte, Effects of Calcium Depletion on the Junctional Complex between Oxyntic Cells of Gastric Glands. J Cell Biol, 1964. 22: p. 173-88.
37. Ye, J., et al., A role for intracellular calcium in tight junction reassembly after ATP depletion-repletion. Am J Physiol, 1999. 277(4 Pt 2): p. F524-32.
38. Staddon, J.M., et al., Evidence that tyrosine phosphorylation may increase tight junction permeability. J Cell Sci, 1995. 108 ( Pt 2): p. 609-19.
39. Mullin, J.M. and T.G. O'Brien, Effects of tumor promoters on LLC-PK1 renal epithelial tight junctions and transepithelial fluxes. Am J Physiol, 1986. 251(4 Pt 1): p. C597-602.
40. Ojakian, G.K., Tumor promoter-induced changes in the permeability of epithelial cell tight junctions. Cell, 1981. 23(1): p. 95-103.
41. Mullin, J.M. and M.T. McGinn, Effects of diacylglycerols on LLC-PK1 renal epithelia: similarity to phorbol ester tumor promoters. J Cell Physiol, 1988. 134(3): p. 357-66.
42. Berra, E., et al., Protein kinase C zeta isoform is critical for mitogenic signal transduction. Cell, 1993. 74(3): p. 555-63.
43. Diaz-Meco, M.T., et al., The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell, 1996. 86(5): p. 777-86.
44. Wetsel, W.C., et al., Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol, 1992. 117(1): p. 121-33.
45. Xie, Z., et al., Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem, 2006. 281(10): p. 6366-75.
46. Savkovic, S.D., A. Koutsouris, and G. Hecht, PKC zeta participates in activation of inflammatory response induced by enteropathogenic E. coli. Am J Physiol Cell Physiol, 2003. 285(3): p. C512-21.
47. Diaz-Meco, M.T., et al., A dominant negative protein kinase C zeta subspecies blocks NF-kappa B activation. Mol Cell Biol, 1993. 13(8): p. 4770-5.
48. Parkinson, S.J., et al., Identification of PKCzetaII: an endogenous inhibitor of cell polarity. EMBO J, 2004. 23(1): p. 77-88.
49. Lin, D., et al., A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol, 2000. 2(8): p. 540-7.
50. Avila-Flores, A., et al., Tight-junction protein zonula occludens 2 is a target of phosphorylation by protein kinase C. Biochem J, 2001. 360(Pt 2): p. 295-304.
51. Dodane, V. and B. Kachar, Identification of isoforms of G proteins and PKC that colocalize with tight junctions. J Membr Biol, 1996. 149(3): p. 199-209.
52. Li, X., et al., Role of protein kinase Czeta in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood, 2004. 104(6): p. 1716-24.
53. Stamatovic, S.M., et al., Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem, 2006. 281(13): p. 8379-88.
54. Tomson, F.L., et al., Differing roles of protein kinase C-zeta in disruption of tight junction barrier by enteropathogenic and enterohemorrhagic Escherichia coli. Gastroenterology, 2004. 127(3): p. 859-69.
55. Zyrek, A.A., et al., Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol, 2007. 9(3): p. 804-16.
56. Ratz, P.H. and A.S. Miner, Role of protein kinase Czeta and calcium entry in KCl-induced vascular smooth muscle calcium sensitization and feedback control of cellular calcium levels. J Pharmacol Exp Ther, 2009. 328(2): p. 399-408.
57. Clayburgh, D.R., L. Shen, and J.R. Turner, A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest, 2004. 84(3): p. 282-91.
58. Irvine, E.J. and J.K. Marshall, Increased intestinal permeability precedes the onset of Crohn's disease in a subject with familial risk. Gastroenterology, 2000. 119(6): p. 1740-4.
59. Katz, K.D., et al., Intestinal permeability in patients with Crohn's disease and their healthy relatives. Gastroenterology, 1989. 97(4): p. 927-31.
60. Abreu, M.T., et al., Modulation of barrier function during Fas-mediated apoptosis in human intestinal epithelial cells. Gastroenterology, 2000. 119(6): p. 1524-36.
61. Chin, A.C., et al., Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun, 2002. 70(7): p. 3673-80.
62. Yu, L.C., et al., SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J, 2005. 19(13): p. 1822-35.
63. Chin, A.C., et al., The role of caspase-3 in lipopolysaccharide-mediated disruption of intestinal epithelial tight junctions. Can J Physiol Pharmacol, 2006. 84(10): p. 1043-50.
64. Bojarski, C., et al., The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci, 2004. 117(Pt 10): p. 2097-107.
65. Gitter, A.H., et al., Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis. FASEB J, 2000. 14(12): p. 1749-53.
66. Merger, M., et al., Defining the roles of perforin, Fas/FasL, and tumour necrosis factor alpha in T cell induced mucosal damage in the mouse intestine. Gut, 2002. 51(2): p. 155-63.
67. Chin, A.C., et al., Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proc Natl Acad Sci U S A, 2003. 100(19): p. 11104-9.
68. Atre, A.N., et al., Association of small Rho GTPases and actin ring formation in epithelial cells during the invasion by Candida albicans. FEMS Immunol Med Microbiol, 2009. 55(1): p. 74-84.
69. Weflen, A.W., N.M. Alto, and G.A. Hecht, Tight junctions and enteropathogenic E. coli. Ann N Y Acad Sci, 2009. 1165: p. 169-74.
70. Guttman, J.A., et al., Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell Microbiol, 2006. 8(4): p. 634-45.
71. Viswanathan, V.K., et al., Enteropathogenic E. coli-induced barrier function alteration is not a consequence of host cell apoptosis. Am J Physiol Gastrointest Liver Physiol, 2008. 294(5): p. G1165-70.
72. Bruewer, M., et al., Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol, 2003. 171(11): p. 6164-72.
73. Fish, S.M., R. Proujansky, and W.W. Reenstra, Synergistic effects of interferon gamma and tumour necrosis factor alpha on T84 cell function. Gut, 1999. 45(2): p. 191-8.
74. Ignarro, L.J., Heme-dependent activation of soluble guanylate cyclase by nitric oxide: regulation of enzyme activity by porphyrins and metalloporphyrins. Semin Hematol, 1989. 26(1): p. 63-76.
75. Ignarro, L.J., Endothelium-derived nitric oxide: actions and properties. FASEB J, 1989. 3(1): p. 31-6.
76. Garthwaite, J., Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci, 1991. 14(2): p. 60-7.
77. Hibbs, J.B., Jr., Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol, 1991. 142(7): p. 565-9; discussion 596-8.
78. Stuehr, D.J., et al., Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med, 1989. 169(3): p. 1011-20.
79. Azuma, H., M. Ishikawa, and S. Sekizaki, Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol, 1986. 88(2): p. 411-5.
80. Rai, R.M., et al., Impaired liver regeneration in inducible nitric oxide synthasedeficient mice. Proc Natl Acad Sci U S A, 1998. 95(23): p. 13829-34.
81. Kim, Y.M., R.V. Talanian, and T.R. Billiar, Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem, 1997. 272(49): p. 31138-48.
82. Mannick, J.B., et al., Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell, 1994. 79(7): p. 1137-46.
83. Katsube, T., H. Tsuji, and M. Onoda, Nitric oxide attenuates hydrogen peroxide-induced barrier disruption and protein tyrosine phosphorylation in monolayers of intestinal epithelial cell. Biochim Biophys Acta, 2007. 1773(6): p. 794-803.
84. Kanwar, S., et al., Nitric oxide synthesis inhibition increases epithelial permeability via mast cells. Am J Physiol, 1994. 266(2 Pt 1): p. G222-9.
85. Fang, F.C., Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest, 1997. 99(12): p. 2818-25.
86. MacMicking, J., Q.W. Xie, and C. Nathan, Nitric oxide and macrophage function. Annu Rev Immunol, 1997. 15: p. 323-50.
87. Shah, V., et al., Nitric oxide in gastrointestinal health and disease. Gastroenterology, 2004. 126(3): p. 903-13.
88. Nakane, M., et al., Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett, 1993. 316(2): p. 175-80.
89. Shaul, P.W., et al., Endothelial nitric oxide synthase is expressed in cultured human bronchiolar epithelium. J Clin Invest, 1994. 94(6): p. 2231-6.
90. Nathan, C., Nitric oxide as a secretory product of mammalian cells. FASEB J, 1992. 6(12): p. 3051-64.
91. Hibbs, J.B., Jr., R.R. Taintor, and Z. Vavrin, Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science, 1987. 235(4787): p. 473-6.
92. Hibbs, J.B., Jr., et al., Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun, 1988. 157(1): p. 87-94.
93. Salvemini, D., et al., Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Natl Acad Sci U S A, 1989. 86(16): p. 6328-32.
94. Chen, X.M. and D.D. Kitts, Determining conditions for nitric oxide synthesis in Caco-2 cells using Taguchi and factorial experimental designs. Anal Biochem, 2008. 381(2): p. 185-92.
95. Vignoli, A.L., et al., Nitric oxide production in Caco-2 cells exposed to different inducers, inhibitors and natural toxins. Toxicol In Vitro, 2001. 15(4-5): p. 289-95.
96. Vareille, M., et al., Heme oxygenase-1 is a critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes. J Immunol, 2008. 180(8): p. 5720-6.
97. Meng, Q., et al., Regulation of amino acid arginine transport by lipopolysaccharide and nitric oxide in intestinal epithelial IEC-6 cells. J Gastrointest Surg, 2005. 9(9): p. 1276-85; discussion 1285.
98. Nguyen, T., et al., DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A, 1992. 89(7): p. 3030-4.
99. Clancy, R.M., et al., Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Natl Acad Sci U S A, 1994. 91(9): p. 3680-4.
100. Stamler, J.S., et al., Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci U S A, 1992. 89(16): p. 7674-7.
101. Stamler, J.S. and J. Loscalzo, Capillary zone electrophoretic detection of biological thiols and their S-nitrosated derivatives. Anal Chem, 1992. 64(7): p. 779-85.
102. Stamler, J.S., et al., S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci U S A, 1992. 89(17): p. 8087-91.
103. Stamler, J.S., et al., S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A, 1992. 89(1): p. 444-8.
104. Stamler, J.S., D.J. Singel, and J. Loscalzo, Biochemistry of nitric oxide and its redox-activated forms. Science, 1992. 258(5090): p. 1898-902.
105. Butler, A.R., et al., Synthesis, decomposition, and vasodilator action of some new S-nitrosated dipeptides. Nitric Oxide, 1998. 2(3): p. 193-202.
106. Askew, S.C., et al., Chemical mechanisms underlying the vasodilator and platelet anti-aggregating properties of S-nitroso-N-acetyl-DL-penicillamine and S-nitrosoglutathione. Bioorg Med Chem, 1995. 3(1): p. 1-9.
107. Unno, N., et al., Hyperpermeability of intestinal epithelial monolayers is induced by NO: effect of low extracellular pH. Am J Physiol, 1997. 272(5 Pt 1): p. G923-34.
108. Palmer, R.M., A.G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987. 327(6122): p. 524-6.
109. Bellamy, T.C., J. Wood, and J. Garthwaite, On the activation of soluble guanylyl cyclase by nitric oxide. Proc Natl Acad Sci U S A, 2002. 99(1): p. 507-10.
110. Denninger, J.W. and M.A. Marletta, Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta, 1999. 1411(2-3): p. 334-50.
111. Friebe, A. and D. Koesling, Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res, 2003. 93(2): p. 96-105.
112. Ignarro, L.J., et al., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A, 1987. 84(24): p. 9265-9.
113. Jaffrey, S.R., et al., Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol, 2001. 3(2): p. 193-7.
114. Beckman, J.S. and W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol, 1996. 271(5 Pt 1): p. C1424-37.
115. Kennedy, M., et al., Poly(ADP-ribose) synthetase activation mediates increased permeability induced by peroxynitrite in Caco-2BBe cells. Gastroenterology, 1998. 114(3): p. 510-8.
116. Clemens, M.G., Nitric oxide in liver injury. Hepatology, 1999. 30(1): p. 1-5.
117. Middleton, S.J., M. Shorthouse, and J.O. Hunter, Increased nitric oxide synthesis in ulcerative colitis. Lancet, 1993. 341(8843): p. 465-6.
118. Boughton-Smith, N.K., et al., Nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Lancet, 1993. 342(8867): p. 338-40.
119. Lundberg, J.O., et al., Greatly increased luminal nitric oxide in ulcerative colitis. Lancet, 1994. 344(8938): p. 1673-4.
120. Hogaboam, C.M., et al., The selective beneficial effects of nitric oxide inhibition in experimental colitis. Am J Physiol, 1995. 268(4 Pt 1): p. G673-84.
121. Coulie, B., et al., Colonic motility in chronic ulcerative proctosigmoiditis and the effects of nicotine on colonic motility in patients and healthy subjects. Aliment Pharmacol Ther, 2001. 15(5): p. 653-63.
122. Perner, A., et al., Expression of nitric oxide synthases and effects of L-arginine and L-NMMA on nitric oxide production and fluid transport in collagenous colitis. Gut, 2001. 49(3): p. 387-94.
123. Ambs, S., et al., Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst, 1999. 91(1): p. 86-8.
124. Islam, D., et al., In situ characterization of inflammatory responses in the rectal mucosae of patients with shigellosis. Infect Immun, 1997. 65(2): p. 739-49.
125. Witthoft, T., et al., Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells. Am J Physiol, 1998. 275(3 Pt 1): p. G564-71.
126. Nathan, C. and Q.W. Xie, Nitric oxide synthases: roles, tolls, and controls. Cell, 1994. 78(6): p. 915-8.
127. Nathan, C. and Q.W. Xie, Regulation of biosynthesis of nitric oxide. J Biol Chem, 1994. 269(19): p. 13725-8.
128. Tepperman, B.L., et al., Nitric oxide synthase activity, viability and cyclic GMP levels in rat colonic epithelial cells: effect of endotoxin challenge. J Pharmacol Exp Ther, 1994. 271(3): p. 1477-82.
129. Suzuki, Y., et al., Inducible nitric oxide synthase gene knockout mice have increased resistance to gut injury and bacterial translocation after an intestinal ischemia-reperfusion injury. Crit Care Med, 2000. 28(11): p. 3692-6.
130. Palasthy, Z., et al., Intestinal nitric oxide synthase activity changes during experimental colon obstruction. Scand J Gastroenterol, 2006. 41(8): p. 910-8.
131. Xu, D.Z., Q. Lu, and E.A. Deitch, Nitric oxide directly impairs intestinal barrier function. Shock, 2002. 17(2): p. 139-45.
132. Han, X., M.P. Fink, and R.L. Delude, Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock, 2003. 19(3): p. 229-37.
133. Unno, N., et al., Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology, 1997. 113(4): p. 1246-57.
134. Chen, L.W., et al., Specific inhibition of iNOS decreases the intestinal mucosal peroxynitrite level and improves the barrier function after thermal injury. Burns, 1998. 24(8): p. 699-705.
135. Owens, S.E., et al., A strategy to identify stable membrane-permeant peptide inhibitors of myosin light chain kinase. Pharm Res, 2005. 22(5): p. 703-9.
136. Lamkin-Kennard, K.A., D.G. Buerk, and D. Jaron, Interactions between NO and O2 in the microcirculation: a mathematical analysis. Microvasc Res, 2004. 68(1): p. 38-50.
137. Hock, C.E., et al., Effects of inhibition of nitric oxide synthase by aminoguanidine in acute endotoxemia. Am J Physiol, 1997. 272(2 Pt 2): p. H843-50.
138. Teke, Z., et al., Activated protein C attenuates intestinal mucosal injury after mesenteric ischemia/reperfusion. J Surg Res, 2008. 149(2): p. 219-30.
139. Inaba, T., et al., Nitric oxide promotes the internalization and passage of viable bacteria through cultured Caco-2 intestinal epithelial cells. Shock, 1999. 11(4): p. 276-82.
140. Salzman, A.L., et al., Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. Am J Physiol, 1995. 268(2 Pt 1): p. G361-73.
141. Olivo, C., et al., Distinct involvement of cdc42 and RhoA GTPases in actin organization and cell shape in untransformed and Dbl oncogene transformed NIH3T3 cells. Oncogene, 2000. 19(11): p. 1428-36.
142. Sahai, E. and C.J. Marshall, ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol, 2002. 4(6): p. 408-15.
143. Ivanov, A.I., et al., Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility. BMC Cell Biol, 2009. 10: p. 36.
144. Ignarro, L.J., Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol, 2002. 53(4 Pt 1): p. 503-14.
145. Lincoln, T.M., Effects of nitroprusside and 8-bromo-cyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther, 1983. 224(1): p. 100-7.
146. Johnson, R.M. and T.M. Lincoln, Effects of nitroprusside, glyceryl trinitrate, and 8-bromo cyclic GMP on phosphorylase a formation and myosin light chain phosphorylation in rat aorta. Mol Pharmacol, 1985. 27(3): p. 333-42.
147. White, R.E., et al., Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature, 1993. 361(6409): p. 263-6.
148. Archer, S.L., et al., Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A, 1994. 91(16): p. 7583-7.
149. Lincoln, T.M., N. Dey, and H. Sellak, Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol, 2001. 91(3): p. 1421-30.
150. Surks, H.K., et al., Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science, 1999. 286(5444): p. 1583-7.
151. Torrecillas, G., et al., Mechanisms of cGMP-dependent mesangial-cell relaxation: a role for myosin light-chain phosphatase activation. Biochem J, 2000. 346 Pt 1: p. 217-22.
152. Sauzeau, V., et al., Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem, 2000. 275(28): p. 21722-9.
153. Etter, E.F., et al., Activation of myosin light chain phosphatase in intact arterial smooth muscle during nitric oxide-induced relaxation. J Biol Chem, 2001. 276(37): p. 34681-5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44055-
dc.description.abstract一氧化氮 (nitric oxide, NO)在腸道生理恆定功能中扮演重要角色,然而過去研究顯示黏膜中過量的一氧化氮可能與腸道發炎和上皮屏障缺損有關。腸道屏障主要由單層上皮細胞構成,並經由緊密連結蛋白 (tight junction, TJ),例如ZO-1和occludin,和圍連結肌動肌凝蛋白環 (perijunctional actinomyosin ring, PAMR)將細胞緊密相連。緊密連結之破壞與PAMR之收縮會導致上皮通透性上升。腸道上皮細胞與平滑肌細胞相同,可透過兩種磷酸激酶,Rho蛋白激酶 (Rho kinase, ROCK)和肌凝蛋白輕鏈激酶 (myosin light chain kinase, MLCK)將肌凝蛋白輕鏈磷酸化而造成機動肌凝蛋白收縮。磷酸激酶C zeta (PKCzeta)(一種附膜的非典型磷酸激酶C)的活化對緊密連結蛋白的重組扮演重要角色,且被認為與Rho訊息傳遞有關。因此本篇研究的目的即是要確認肌凝蛋白輕鏈的磷酸化和緊密連結蛋白的瓦解是否參與一氧化氮所引起之腸道上皮屏障功能缺損的機制。將人類結腸癌上皮細胞株Caco-2細胞給予0.5到5 mM濃度的一氧化氮供體S-Nitroso-N-acetylpenicillamine (SNAP, a NO donor)刺激24小時後,透過測量跨上皮電阻值 (transepithelial resistance, TER)以及螢光探針dextran-FITC (分子量3000)從頂腔面到底側面的速率當作細胞間通透性的指標。正常控制組的Caco-2上皮細胞在培養14~21天達到過滿狀態,其TER可達250-300 Ω*cm2。給予SNAP刺激則造成TER的下降以及探針通透率的增加,並呈現濃度依賴性。SNAP (1 mM)可以在不引起細胞凋亡的情況下造成TER下降69%並使上皮通透性增加11倍。細胞經預處理pancaspase或caspase-3抑制劑後並不能反轉1 mM SNAP所造成的屏障缺損,證實此現象發生並非因為細胞凋亡之緣故。透過定量西方墨點法的結果可得知SNAP刺激15分鐘後會造成PKCzeta磷酸化程度上升。刺激24小時後會引起緊密連結蛋白occludin的切割、ZO-1表現量的下降以及肌凝蛋白輕鏈磷酸化的增加。利用免疫螢光染色也觀察到SNAP處理的細胞其緊密連結蛋白和細胞骨架之結構不規則化並有細胞圓型化之現象。ROCK抑制劑 (Y-27632, 20 μM)及MLCK抑制劑 (PIK, 125-175 μM)可以降低SNAP所造成肌凝蛋白輕鏈的磷酸化。預處理ROCK抑制劑Y-27632 (20-50 μM)可反轉SNAP所造成的上皮屏障功能缺損,但MLCK抑制劑如PIK (125-175 μM)或ML-7 (20 μM)則未見此效果。此外,將細胞預處理PKCzeta抑制劑PKCzeta pseudosubstrate (20 μM)也可反轉SNAP所造成通透性的增加和緊密連結的破壞,但並無法降低SNAP引起之肌凝輕鏈磷酸化。綜合以上結果,一氧化氮可以活化PKCzeta而促進緊密連結蛋白之瓦解,並經由ROCK造成肌凝蛋白輕鏈之磷酸化,進而導致腸道屏障功能的缺損。zh_TW
dc.description.abstractPhysiological level of nitric oxide (NO) is crucial for maintaining gastrointestinal homeostasis, yet excessive production of mucosal NO is associated with gut inflammation and barrier defects. Intestinal barrier is composed of a monolayer of enterocytes linked by tight junctional proteins, e.g. ZO-1 and occludin, and perijunctional actinomyosin ring (PAMR). Disruption of TJs or contraction of PAMR leads to the increase of epithelial permeability. The mechanism of actinomyosin contraction was similar between epithelial and smooth muscle cells, which involved the phosphorylation of myosin light chain (MLC) by kinases, e.g. myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). Activation of PKCzeta (a membrane-associated atypical PKC) played a role in tight junctional remodeling in epithelial cells and was found associated with Rho signaling in smooth muscle cells. The aim was to investigate whether MLC phosphorylation and TJ disruption were involved in NO-induced intestinal epithelial barrier defects. Human colonic carcinoma Caco-2 cells were exposed to 0.5-5 mM S-Nitroso-N-acetylpenicillamine (SNAP, a NO donor) for 24 hr, and the transepithelial resistance (TER) and apical-to-basolateral flux rate of dextran-FITC (MW3000) were used as indicators of paracellular permeability. Post-confluent Caco-2 cells grown on transwells for 14-21 days established TJ and TER of 250-300 Ω*cm2. Exposure to SNAP increased epithelial permeability in a dose-dependent manner. SNAP concentration at 1 mM induced a 69% drop of TER and an 11-fold increase of epithelial permeability that were apoptosis-independent. The loss of epithelial barrier triggered by 1 mM SNAP was not blocked by pretreatment with a pancaspase or caspase-3 inhibitor. Densitometric analysis of western blots showed that 1 mM SNAP caused PKCzeta phosphorylation at 15 min post-challenge, as well as MLC phosphorylation, occludin cleavage and ZO-1 decrease at 24 hr post-challenge. Disorganization of TJs and cytoskeleton was associated with cell rounding in SNAP-exposed cells. Inhibitors to ROCK (Y-27632, 20 μM) and to MLCK (a novel membrane-permeant inhibitor of MLCK (PIK), 125-175 μM) reduced the level of MLC phosphorylation caused by SNAP challenge. Pretreatment with a ROCK inhibitor (Y-27632, 20-50 μM) attenuated SNAP-induced barrier defects whereas MLCK inhibitors, i.e. PIK (125-175 μM) or ML-7 (20 μM) had no effect. Moreover, pretreatment with PKCzeta inhibitory pseudosubstrate (20 μM) blocked SNAP-induced permeability rise and TJ disruption, but did not decrease the MLC phosphorylation. These findings suggest that exposure to NO induced PKCzeta-dependent TJ disruption and ROCK-dependent MLC phosphorylation, resulting in an increase of epithelial permeability.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:38:00Z (GMT). No. of bitstreams: 1
ntu-98-R96441003-1.pdf: 2807619 bytes, checksum: bd88c61adaedcf999b32ebb8a61ee3e7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書…………………………………………… ………………………… Ⅰ
誌謝………………………………………………………………… …………………… Ⅱ
中文摘要……………………………………………………………………………… … Ⅳ
英文摘要………………………………………………………………………… ……… Ⅵ
中英文縮寫名詞對照表……………………………………………… ………………… Ⅷ
第一章 文獻回顧………………………………………………………………………. 1
1. 腸道屏障功能………………………………………………….…………………1
1.1 緊密連結概述 …………………………………………….…………………1
1.2 圍連結肌動肌凝蛋白環 (perijunctional actinomyosin ring, PAMR):肌凝蛋白 (myosin)概述 ……………………………………………………………2
1.3 肌凝輕鏈之調控 ……………………………….……………………………3
1.4 肌凝蛋白輕鏈 (MLC)與緊密連結 (tight junctions)之關連 ……….......... ..5
1.5 調控緊密連結之訊息傳遞 …………………….……………………………6
2. 腸道屏障功能喪失………………………………………….……………………8
2.1 細胞凋亡依賴性 (apoptosis-dependent) ……………………………………8
2.2 非細胞凋亡依賴性 (apoptosis-independent) ……………….………………8
3. 一氧化氮與腸道屏障功能之關連性……………………………………………9
3.1 一氧化氮正常生理功能 …………………………………….………………9
3.2 一氧化氮合成機制…………………………………………….……………10
3.3 一氧化氮供體釋出機制……………………………………….……………11
3.4 一氧化氮之訊息傳導路徑…………………………………….……………12
3.5 過量一氧化氮之腸道病理現象……………………………….……………13
3.6 過量一氧化氮與腸道上皮屏障功能之影響………………….……………15
4. 研究目的 ………………………………………………………………………15
第二章 材料與方法 …………………………………………………………………16
1. 細胞培養…………….…………………………………………………………16
2. 一氧化氮供體nitric oxide donor (S-Nitroso-N-acetylpenicillamine (SNAP)) ....……………………………………………………………………..16
3. 抑制劑……………………………………………………………………….…17
3.1 Membrane-permeant inhibitor of MLCK (PIK) ……………………………17
3.2 Y-27632 ………………………………………………………………..……18
3.3 Z-VAD-FMK ……………………………………………………………..…18
3.4 Z-DEVD-FMK………………………………………………………………18
3.5 Gö6983………………………………………………………………………18
3.6 PKCzeta pseudosubstrate, myristoylated……………………………………18
3.7 ML-7 ………………………………………………………………………..18
4. 屏障功能測量………………………………………………………………….19
4.1 跨上皮細胞電阻 (transepithelial resistance, TER) …………………….…19
4.2 探針通透性 (dextran -FITC permeability)………………...………………19
5. TUNEL assay…...………………………………………………………………20
6. NP-40可溶性蛋白質萃取 (extraction of NP-40 soluble proteins) .….…….…21
7. 細胞質與細胞膜蛋白質萃取 (extraction of cytosolic and memebrane-bound fractions) ……..……………………………………………….………..………21
8. 西方墨點法 (western blotting) ……………………………….……….………22
9. 免疫螢光染色 (immunofluorescent staining) ..…………...….………….……25
10. Griess method. ……………………………………….…………… ………...…26
11. 統計分析..………………………………………………….……………. …….27
第三章 結果 ……………………………………………………………………….…28
1. 一氧化氮供體SNAP可穩定釋出一氧化氮……………………………….…28
2. SNAP刺激造成腸道上皮屏障功能缺損現象,並呈現濃度依賴性….….…28
3. SNAP所造成的屏障功能缺損現象可經由細胞凋亡依賴性與非依賴性之途徑..……………………….…………………………………………………..…29
3.1 TUNEL assay結果顯示,1 mM SNAP並不會增加細胞DNA片段化程度. ……………………………………………………………………….......29
3.2 Hoechst staining結果顯示1 mM SNAP並不會引起細胞染色質濃縮…..30
3.3 預先投予Caspase抑制劑並不能減緩1 mM SNAP所造成之屏障功能缺損………………..………………………………………………………….30
4. 一氧化氮引起之Caco-2之肌凝蛋白輕鏈 (MLC)之磷酸化……….……….30
4.1 SNAP造成Caco-2 細胞之MLC磷酸化程度增加……………………….30
4.2 ROCK抑制劑Y-27632可以部分緩和SNAP所造成Caco-2細胞之屏障功能缺損,且呈濃度依賴性……………………………………………......…31
4.3 MLCK抑制劑PIK與ML-7無法預防SNAP所造成Caco-2細胞之屏障功能缺損……………………………………………………………………….31
5. 一氧化氮造成腸道上皮細胞緊密連結蛋白與細胞骨架結構之破壞………32
5.1 以西方墨點法顯示一氧化氮降低ZO-1蛋白表現以及促進occludin切割……………………………………………………………………….……32
5.2 以免疫螢光染色顯示一氧化氮破壞緊密連結蛋白ZO-1與occludin之結構,並使細胞呈現圓形化凸起……………………………………………….…32
5.3 一氧化氮破壞細胞骨架F-actin之結構並造成細胞變形…………………33
6. 一氧化氮造成之屏障功能缺損是經由PKCzeta之訊息傳遞路徑………..…33
6.1 SNAP刺激15分鐘造成PKCzeta磷酸化程度增加…………….……..… 33
6.2 SNAP刺激60分鐘有引起PKCzeta從細胞質轉移至細胞膜上的趨勢…33
6.3 PKC抑制劑 (Gö6983)和PKCzeta抑制劑 (PKCzeta pseudosubstrate)可以防止一氧化氮造成之屏障功能缺損………………..…….……………..…34
6.4 PKCzeta抑制劑PKCzeta psuedosubstrate可以防止一氧化氮造成之緊密連結蛋白破壞………………………………………….…………………..…34
6.5 PKCzeta-PS不能減少SNAP引起之肌凝蛋白輕鏈磷酸化上升……..…35
第四章 討論……………………………………………………………………..……36
第五章 圖表…………………………………………………………….………….…42
第六章 參考文獻…………………………………………………….………….……68
dc.language.isozh-TW
dc.subjectPKCzetazh_TW
dc.subject腸道上皮細胞zh_TW
dc.subject屏障功能zh_TW
dc.subject一氧化氮zh_TW
dc.subject緊密連結zh_TW
dc.subject肌凝蛋白輕鏈zh_TW
dc.subjectPAMRzh_TW
dc.subjectROCKzh_TW
dc.subjectMLCKzh_TW
dc.subjectMLCKen
dc.subjectbarrier functionsen
dc.subjectnitric oxideen
dc.subjecttight junctionsen
dc.subjectmyosin light chainen
dc.subjectPAMRen
dc.subjectROCKen
dc.subjectPKCzetaen
dc.subjectntestinal epithelial cellsen
dc.title一氧化氮造成腸道上皮屏障功能缺損的分子機制:緊密連結蛋白之瓦解和肌凝蛋白輕鏈之磷酸化所扮演的角色zh_TW
dc.titleMolecular Mechanisms of Nitric Oxide-Induced Intestinal Epithelial Barrier Defects: Role of Tight Junctional Disruption and Myosin Light Chain Phosphorylationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張智芬,沈麗娟,李建國
dc.subject.keyword腸道上皮細胞,屏障功能,一氧化氮,緊密連結,肌凝蛋白輕鏈,PAMR,ROCK,MLCK,PKCzeta,zh_TW
dc.subject.keywordntestinal epithelial cells,barrier functions,nitric oxide,tight junctions,myosin light chain,PAMR,ROCK,MLCK,PKCzeta,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2009-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved