Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44046
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺(Pai-Chi Li)
dc.contributor.authorShun-Li Wangen
dc.contributor.author王珣力zh_TW
dc.date.accessioned2021-06-15T02:37:37Z-
dc.date.available2009-08-14
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-12
dc.identifier.citation[1] J. Y. Lu, H. Zou, and J. F. Greenleaf, 'Biomedical ultrasound beam forming,' Ultrasound Med. Biol., vol. 20, pp. 403-28, 1994.
[2] D. H. Johnson and D. E. Dudgeon, Array signal processing : concepts and techniques. Englewood Cliffs, NJ: Prentice Hall, 1993.
[3] S. W. Flax and M. O'donnell, 'Phase-aberration correction using signals from point reflectors and diffuse scatterers - basic principles,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 35, pp. 758-767, Nov 1988.
[4] M. O'Donnell and S. W. Flax, 'Phase-aberration correction using signals from point reflectors and diffuse scatterers - measurements,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 35, pp. 768-774, Nov 1988.
[5] S. Krishnan, K. W. Rigby, and M. O'Donnell, 'Improved estimation of phase aberration profiles,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 44, pp. 701-713, 1997.
[6] G. C. Ng, S. S. Worrell, P. D. Freiburger, and G. E. Trahey, 'A comparative evaluation of several algorithms for phase aberration correction,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 41, pp. 631-643, 1994.
[7] D. L. Liu and R. C. Waag, 'Correction of ultrasonic wavefront distortion using backpropagation and a reference waveform method for time-shift compensation,' J. Acoust. Soc. Am., vol. 96, pp. 649-660, 1994.
[8] P.-C. Li and M. O'Donnell, 'Phase aberration correction on two-dimensional conformal arrays,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 42, pp. 73-82, 1995.
[9] P. C. Li, S. W. Flax, E. S. Ebbini, and M. O'Donnell, 'Blocked element compensation in phased array imaging,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 40, pp. 283-292, 1993.
[10] P. C. Li and M. Odonnell, 'Improved detectability with blocked element compensation,' Ultrason. Imag., vol. 16, pp. 1-18, Jan 1994.
[11] S. Krishnan, L. Pai-Chi, and M. O'Donnell, 'Adaptive compensation of phase and magnitude aberrations,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 43, pp. 44-55, 1996.
[12] S. Krishnan, K. W. Rigby, and M. O'Donnell, 'Efficient parallel adaptive aberration correction,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 45, pp. 691-703, 1998.
[13] K. W. Hollman, K. W. Rigby, and M. O'Donnell, 'Coherence factor of speckle from a multi-row probe,' in Proc. IEEE Ultrason. Symp., 1999, pp. 1257-1260.
[14] R. Mallart and M. Fink, 'Adaptive focusing in scattering media through sound-speed inhomogeneities: The van Cittert Zernike approach and focusing criterion,' J. Acoust. Soc. Am., vol. 96, pp. 3721-3732, 1994.
[15] S. D. Silverstein, 'Ultrasound scattering model: 2-D cross-correlation and focusing criteria-theory, simulations, and experiments,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 48, pp. 1023-1030, 2001.
[16] P.-C. Li and M.-L. Li, 'Adaptive imaging using the generalized coherence factor,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50, pp. 128-141, 2003.
[17] S.-L. Wang, C.-H. Chang, H.-C. Yang, Y.-H. Chou, and P.-C. Li, 'Performance Evaluation of Coherence-Based Adaptive Imaging Using Clinical Breast Data,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 1669-1679, 2007.
[18] M. E. Anderson, 'Multi-dimensional velocity estimation with ultrasound using spatial quadrature,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 45, pp. 852-861, May 1998.
[19] J. A. Jensen and P. Munk, 'A new method for estimation of velocity vectors,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 45, pp. 837-851, May 1998.
[20] S.-L. Wang, M.-L. Li, and P.-C. Li, 'Estimating the blood velocity vector using aperture domain data,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 70-78, 2007.
[21] S.-W. Huang and P.-C. Li, 'Computed tomography sound velocity reconstruction using incomplete data,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 51, pp. 329-342, 2004.
[22] S.-W. Huang and P.-C. Li, 'Ultrasonic computed tomography reconstruction of the attenuation coefficient using a linear array,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 52, pp. 2011-2022, 2005.
[23] J. A. Hossack, 'Extended focal depth imaging for medical ultrasound,' in Proc. IEEE Ultrason. Symp., 1996, pp. 1535-1540 vol.2.
[24] J. A. Jensen, Estimation of blood velocities using ultrasound : a signal processing approach. Cambridge ; New York, USA: Cambridge University Press, 1996.
[25] J. R. Overbeck, K. W. Beach, and D. E. Strandness, Jr., 'Vector Doppler: accurate measurement of blood velocity in two dimensions,' Ultrasound Med. Biol., vol. 18, pp. 19-31, 1992.
[26] P. J. Phillips, S. W. Straka, and O. T. v. Ramm, 'Real-time two-dimensional vector velocity mapping ultrasound systems using subaperture pulse chasing,' Ultrason. Imag., vol. 18, p. 60, 1996.
[27] G. E. Trahey, J. W. Allison, and O. T. von Ramm, 'Angle independent ultrasonic detection of blood flow,' IEEE Trans. Biomed. Eng., vol. 34, pp. 965-7, Dec 1987.
[28] L. N. Bohs, B. H. Friemel, and G. E. Trahey, 'Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking,' Ultrasound Med. Biol., vol. 21, pp. 885-98, 1995.
[29] V. L. Newhouse, E. S. Furgason, G. F. Johnson, and D. A. Wolf, 'The dependence of ultrasound Doppler bandwidth on beam geometry,' IEEE Trans. Sonics Ultrason., vol. 27, pp. 50-59, 1980.
[30] V. L. Newhouse, D. Censor, T. Vontz, J. A. Cisneros, and B. B. Goldberg, 'Ultrasound Doppler probing of flows transverse with respect to beam axis,' IEEE Trans. Biomed. Eng., vol. 34, pp. 779-789, Oct 1987.
[31] P. C. Li, C. J. Cheng, and C. C. Shen, 'Doppler angle estimation using correlation,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 47, pp. 188-196, Jan 2000.
[32] C. K. Yeh and P. C. Li, 'Doppler angle estimation using AR modeling,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 49, pp. 683-692, Jun 2002.
[33] S. A. Goss, R. L. Johnston, and F. Dunn, 'Comprehensive compilation of empirical ultrasonic properties of mammalian-tissues,' J. Acoust. Soc. Am., vol. 64, pp. 423-457, 1978.
[34] E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y. Q. Zhou, and F. S. Foster, 'Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo,' Ultrasound Med. Biol., vol. 32, pp. 683-91, May 2006.
[35] J. Bercoff, M. Tanter, S. Chaffai, and M. Fink, 'Ultrafast imaging of beamformed shear waves induced by the acoustic radiation force. Application to transient elastography,' in Proc. IEEE Ultrason. Symp., 2002, pp. 1899-1902 vol.2.
[36] M. O'Donnell, 'Efficient parallel receive beam forming for phased array imaging using phase rotation [medical US application],' in Proc. IEEE Ultrason. Symp., 1990, pp. 1495-1498 vol.3.
[37] D. P. Shattuck, M. D. Weinshenker, S. W. Smith, and O. T. Vonramm, 'Explososcan: a parallel processing technique for high speed ultrasound imaging with linear phased-arrays,' J. Acoust. Soc. Am., vol. 75, pp. 1273-1282, 1984.
[38] J. Bercoff, M. Tanter, and M. Fink, 'Supersonic shear imaging: a new technique for soft tissue elasticity mapping,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 51, pp. 396-409, 2004.
[39] J.-Y. Lu, '2D and 3D high frame rate imaging with limited diffraction beams,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 44, pp. 839-856, 1997.
[40] M. Karaman, L. Pai-Chi, and M. O'Donnell, 'Synthetic aperture imaging for small scale systems,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 42, pp. 429-442, 1995.
[41] J. Y. Lu and J. F. Greenleaf, 'Ultrasonic nondiffracting transducer for medical imaging,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 37, pp. 438-447, 1990.
[42] J.-y. Lu, J. Cheng, and J. Wang, 'High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings high frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 53, pp. 1796-1812, 2006.
[43] J. Wang and J. Y. Lu, 'Effects of phase aberration and noise on extended high frame rate imaging,' Ultrason. Imag., vol. 29, pp. 105-21, Apr 2007.
[44] W. F. Walker and G. E. Trahey, 'Aberrator integration error in adaptive imaging,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 44, pp. 780-791, 1997.
[45] M. O’Donnell, 'Efficient parallel receive beam forming for phased array imaging using phase rotation,' in Proc. IEEE Ultrason. Symp., 1990, pp. 1495-1498.
[46] W. F. Walker and G. E. Trahey, 'A fundamental limit on delay estimation using partially correlated speckle signals,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 42, pp. 301-308, Mar 1995.
[47] R. F. Gunst and R. L. Mason, Regression analysis and its application : a data-oriented approach. New York: M. Dekker, 1980.
[48] K. W. Ferrara and V. R. Algazi, 'A statistical-analysis of the received signal from blood during laminar-flow,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 41, pp. 185-198, Mar 1994.
[49] W. F. Walker and G. E. Trahey, 'A fundamental limit on the performance of correlation-based phase correction and flow estimation techniques,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 41, pp. 644-654, Sep 1994.
[50] J. A. Jensen, 'Field: a program for simulating ultrasound systems,' Med. Biol. Eng. Comp., vol. 4, suppl. 1, pt. 1; Tenth Nordic-Baltic Conference on Biomedical Imaging, pp. 351-353, 1996.
[51] L. Thomas and A. Hall, 'An improved wall filter for flow imaging of low velocity flow,' in Proc. IEEE Ultrason. Symp., 1994, pp. 1701-1704.
[52] F. Viola and W. F. Walker, 'A comparison of the performance of time-delay estimators in medical ultrasound,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50, pp. 392-401, 2003.
[53] L. M. Hinkelman, D.-L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, 'Measurements and correction of ultrasonic pulse distortion produced by human breast,' J. Acoust. Soc. Am., vol. 97, pp. 1958-1969, 1995.
[54] R. C. Gauss, G. E. Trahey, and M. S. Soo, 'Adaptive imaging in the breast,' in Proc. IEEE Ultrason. Symp., 1999, pp. 1563-1569.
[55] G. E. Trahey, P. D. Freiburger, L. F. Nock, and D. C. Sullivan, 'In vivo measurements of ultrasonic beam distortion in the breast,' Ultrason. Imag., vol. 13, pp. 71-90, Jan 1991.
[56] D. L. Liu and R. C. Waag, 'Time-shift compensation of ultrasonic pulse focus degradation using least-mean-square error estimates of arrival time,' J. Acoust. Soc. Am., vol. 95, pp. 542-555, Jan 1994.
[57] Q. Zhu and B. D. Steinberg, 'Wavefront amplitude distortion and image sidelobe levels. I. Theory and computer simulations,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 40, pp. 747-753, 1993.
[58] Q. Zhu, B. D. Steinberg, and R. L. Arenson, 'Wavefront amplitude distortion and image sidelobe levels. II. In vivo experiments,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 40, pp. 754-762, 1993.
[59] R. Y. Chiao, L. J. Thomas, and S. D. Silverstein, 'Sparse array imaging with spatially-encoded transmits,' in Proc. IEEE Ultrason. Symp., 1997, pp. 1679-1682 vol.2.
[60] T. X. Misaridis and J. A. Jensen, 'Space-time encoding for high frame rate ultrasound imaging,' Ultrasonics, vol. 40, pp. 593-597, May 2002.
[61] J. Capon, 'High-resolution frequency-wavenumber spectrum analysis,' Proc. IEEE, vol. 57, pp. 1408-1418, 1969.
[62] F. Vignon and M. R. Burcher, 'Capon beamforming in medical ultrasound imaging with focused beams,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 55, pp. 619-628, 2008.
[63] J. F. Synnevag, A. Austeng, and S. Holm, 'Adaptive beamforming applied to medical ultrasound imaging,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 1606-1613, Aug 2007.
[64] T. Hergum, T. Bjastad, K. Kristoffersen, and H. Torp, 'Parallel beamforming using synthetic transmit beams,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 271-280, 2007.
[65] S. Nikolov, K. Gammelmark, and J. A. Jensen, 'Recursive ultrasound imaging,' in Proc. IEEE Ultrason. Symp., 1999, pp. 1621-1625.
[66] N. Oddershede and J. A. Jensen, 'Effects influencing focusing in synthetic aperture vector flow imaging,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 1811-1825, Sep 2007.
[67] S. T. Nikolov and J. A. Jensen, 'In-vivo synthetic aperture flow imaging in medical ultrasound,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50, pp. 848-856, Jul 2003.
[68] S. P. Weinstein, C. Seghal, E. F. Conant, and J. A. Patton, 'Microcalcifications in breast tissue phantoms visualized with acoustic resonance coupled with power Doppler US: Initial observations,' Radiology, vol. 224, pp. 265-269, Jul 2002.
[69] N. Petrick, B. Sahiner, H. P. Chan, M. A. Helvie, S. Paquerault, and L. M. Hadjiiski, 'Breast cancer detection: Evaluation of a mass-detection algorithm for computer-aided diagnosis - Experience in 263 patients,' Radiology, vol. 224, pp. 217-224, Jul 2002.
[70] M. E. Anderson, M. S. C. Soo, and G. E. Trahey, 'Microcalcifications as elastic scatterers under ultrasound,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 45, pp. 925-934, 1998.
[71] G. Strang, Introduction to linear algebra, 3rd ed. Wellesly, MA: Wellesley-Cambridge, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44046-
dc.description.abstract本論文主要研究超音波陣列系統的孔徑信號(aperture domain data)相關之成像方法與信號處理技術。一般系統廣泛運用的波束形成技術為延遲-加總法,此方法可藉由調整各頻道的時間延遲和權重而使得聲波波束可以電子式聚焦到特定深度及可以任意地調控與位移波束,並調整橫向解析度及波束形狀而使得掃描深度內皆為動態聚焦。在波束加總前的各頻道接收信號亦稱為孔徑信號。在傳統的系統裡,孔徑信號會因為資料量過於龐大而在波束加總後被捨棄,但延遲-加總法僅能獲得波束方向上的空間資訊反而使得超音波影像在臨床上的應用受到限制。本論文中將探討向量流速估計與相位偏移校正方法等兩種孔徑信號處理技術¬。
在第一部份流速估計的應用上,使用所提出的使用孔徑信號之二維流速估測方式來改善傳統的流速估計方法只能量測平行波束方向的流速分量。在這方法中一個沿著陣列方向之時間偏移量變曲線被建立並近似成為一次多項式來求得軸向與橫向速度分量。我們經由模擬和實驗來驗證方法的可行性,結果顯示所提出的方法能改善向量流速估計之誤差且其結果比傳統流速估計法來的更佳,並且可以實現即時二維血流量測。
在相位偏移校正的應用上,我們使用臨床乳房影像驗證一基於接收孔徑信號之同調性的旁瓣抑制法。傳統灰階超音波在乳房病灶偵測上常會因為對比解析度不足而使其效果被限制。由臨床實驗結果顯示相較於傳統基於相關性之方法,所提出的權重方法能顯著的改善乳房影像品質。
在本論文的第三部分,基於同調性的旁瓣抑制法也被延伸應用到高速超音波影像上,在這方法中使用一高精確度之Capon估計法來量測同調能量,並使用僅八次平面波激發與合成發射孔徑方法來達到高速成像。模擬和實驗結果皆顯示所提出之方法都能對對比度與病灶清晰度等影像品質有所改善。結果顯示這些基於同調性的方法能有效改善臨床上的病灶偵測,因我們所提出之方法無須任何聚焦誤差的假設便能有效降低旁瓣貢獻。本論文開發多種影像方法並有效提升流速與對比解析度有助於提升臨床診斷。論文最後亦將探討相關技術之延伸應用。
zh_TW
dc.description.abstractThe purpose of this dissertation is to investigate various processing techniques for ultrasound image formation and signal processing based on aperture domain data for ultrasonic system using arrays. Conventionally, an array system utilizes the widely adopted delay-and-sum method to focus acoustic beams electrically at specific depths with arbitrary steering and shifting by the delay and weighting of each array element. This method can adjust lateral resolution and beam-shapes and therefore provides dynamic focusing throughout the scan depth. The data recorded from individual array channels prior to beam summation are referred to aperture domain data and are often discarded after beam summation due to a large data size. However, the delay-and-sum method only preserves the spatial information along the beam direction and therefore limits the clinical applications. In this thesis, two specific tasks of aperture domain data processing including vector velocity estimation and phase-aberration (i.e., focusing errors resulting from sound-velocity inhomogeneities) correction are investigated.
The first topic in this dissertation is the vector flow estimation. A conventional scanner can only estimate the flow velocity parallel to the beam axis. The proposed flow estimation technique uses aperture domain data for 2D flow-velocity estimation. A time-shift profile along the array direction is constructed and approximated by a first-order polynomial to determine the axial and lateral velocity components. The efficacy of the vector velocity estimation method is verified by simulations and experiments. The results demonstrate that the accuracy of the proposed method is comparable to existing vector velocity estimation method and real-time two-dimensional velocity vector estimation is feasible.
For phase-aberration correction, a sidelobe-reduction technique based on the coherence of the receive aperture domain data is tested with clinical breast data. The performance in lesion detection using B-mode ultrasound is often limited by poor contrast resolution. Experimental results demonstrate that the proposed weighting method is feasible in breast imaging and rivals the conventional correlation-based method with significant image quality improvement.
In the third part of the dissertation, the coherence-based sidelobe-reduction technique is also extended to high-frame-rate adaptive imaging with a high accuracy Capon estimator to estimate the coherent energy. The high frame rate image is formed using plane-wave excitation and a synthetic transmit aperture method using only 8 firings. Significant improvement in contrast and lesion definition is demonstrated through the simulations and breast imaging experiments. The results demonstrate that these coherence-based methods are feasible to improve lesion detection in clinics since these techniques can effectively reduce sidelobe contributions without any assumption regarding the source of focusing errors. In summary, advanced imaging techniques were developed in this thesis to improve velocity and contrast resolution and thus increase diagnostic confidence in clinics. Potential extended application of these methods will also be described.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:37:37Z (GMT). No. of bitstreams: 1
ntu-98-F92921113-1.pdf: 4117603 bytes, checksum: d4056c46a7fea9743930bc8fe3dbc7f7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 I
ABSTRACT II
LIST OF SYMBOLS IV
TABLE OF CONTENTS VI
LIST OF FIGURES IX
LIST OF TABLES XV
CHAPTER 1 INTRODUCTION 1
1.1 ULTRASONIC ARRAY SYSTEM 1
1.2 BEAM FORMATION AND APERTURE DOMAIN PROCESSING 2
1.3 LIMITATIONS OF BEAM SUM DATA 5
1.3.1 Issues of Flow Estimation 5
1.3.2 Issues of Phase Aberration 9
1.3.3 Issues of High Frame Rate Adaptive Imaging 11
1.4 VECTOR VELOCITY ESTIMATION TECHNIQUES 11
1.4.1 Multibeam Methods 11
1.4.2 Speckle Tracking Methods 12
1.4.3 Transit-time Spectral Broadening Methods 12
1.4.4 Spatial Quadrature Methods 12
1.5 ADAPTIVE IMAGING TECHNIQUES 13
1.5.1 Correlation-based Methods 13
1.5.2 Adaptive Sidelobe-reduction Methods 15
1.5.3 Coherence-based Methods 15
1.6 SCOPE AND DISSERTATION ORGANIZATION 16
CHAPTER 2 BLOOD VELOCITY VECTOR ESTIMATION 19
2.1 VECTOR VELOCITY ESTIMATION 19
2.1.1 Basic Principles of Vector Flow Estimation 19
2.2.2 Auto-Correlation Based Method 22
2.2 ESTIMATION ERROR ANALYSIS 25
2.2.1 Axial Velocity Estimation 25
2.2.2 Lateral Velocity Estimation 27
2.3 SIMULATION INVESTIGATION 29
2.3.1 Simulation Methods 29
2.3.2 Simulation Results 29
2.4 EXPERIMENTAL INVESTIGATION 34
2.4.1 Experimental Methods 34
2.4.2 Experimental Results 35
2.5 DISCUSSION AND CONCLUDING REMARKS 37
CHAPTER 3 PERFORMANCE EVALUATION OF COHERENCE-BASED ADAPTIVE IMAGING 41
3.1 GENERALIZED COHERENCE FACTOR (GCF) 41
3.2 SIGNAL PROCESSING PROCEDURES 43
3.3 CLINICAL EXPERIMENTS SETUPS 44
3.4 EXPERIMENTAL RESULTS 45
3.4.1 Cut-off Frequency M0 45
3.4.2 Cyst 47
3.4.3 Fibroadenoma 49
3.4.4 Carcinoma 50
3.4.5 Abscess 51
3.4.6 Milk of Calcium 52
3.5 DISCUSSION 53
3.6 CONCLUDING REMARKS 57
CHAPTER 4 COHERENCE WEIGHTING FOR HIGH-FRAME-RATE ADAPTIVE IMAGING 59
4.1 HIGH FRAME RATE ULTRASOUND IMAGING 59
4.2 Coherence-based Adaptive Imaging 60
4.2.3 Capon Estimator (MVDR Method) 62
4.2.4 Adaptive Imaging Using the CF and MVDR 64
4.3 SIMULATION INVESTIGATION 67
4.3.1 Capon Estimator for a PointTtarget 68
4.3.2 Capon Estimator for a Speckle-generating Target 70
4.3.3 Aberration Correction for a Simulated Anechoic-cyst Phantom 71
4.4 EXPERIMENTAL INVESTIGATION 74
4.4.1 Experimental Setups 74
4.4.2 Fibroadenoma 75
4.4.3 Carcinoma 76
4.4.4 Cyst 77
4.5 DISCUSSION AND CONCLUDING REMARKS 78
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 83
5.1 CONCLUSIONS 83
5.2 FUTURE WORKS 84
5.2.1 Vector Flow Estimation 84
5.2.2 Microcalcification Detection in Breast Ultrasound 85
5.2.3 Efficient Implementation of the Aperture Domain Processing Techniques 85
REFERENCES 89
dc.language.isoen
dc.title孔徑信號處理技術與其在超音波影像之應用zh_TW
dc.titleAperture Domain Processing and Its Applications in Ultrasound Imagingen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee周宜宏,沈哲州,宋孔彬,李夢麟
dc.subject.keyword孔徑信號,向量流速量測,超音波可適性影像,同調因子,高速影像,zh_TW
dc.subject.keywordAperture domain data,Vector flow estimationl,Ultrasonic adaptive imaging,Coherence factor,High frame rate imaging,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2009-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
4.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved