請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖淑貞 | |
| dc.contributor.author | Tzu-Yi Lin | en |
| dc.contributor.author | 林紫禕 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:37:32Z | - |
| dc.date.available | 2012-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-12 | |
| dc.identifier.citation | 1. Adegbola, R. A., D. C. Old, and B. W. Senior. 1983. The adhesins and fimbriae of Proteus mirabilis strains associated with high and low affinity for the urinary tract. J Med Microbiol 16:427-31.
2. Alavi, M., and R. Belas. 2001. Surface sensing, swarmer cell differentiation, and biofilm development. Methods Enzymol 336:29-40. 3. Allison, C., N. Coleman, P. L. Jones, and C. Hughes. 1992. Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60:4740-6. 4. Allison, C., L. Emody, N. Coleman, and C. Hughes. 1994. The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis 169:1155-8. 5. Allison, C., and C. Hughes. 1991. Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75:403-22. 6. Allison, C., H. C. Lai, and C. Hughes. 1992. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol 6:1583-91. 7. Arrecubieta, C., R. Lopez, and E. Garcia. 1994. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J Bacteriol 176:6375-83. 8. Arricau, N., D. Hermant, H. Waxin, C. Ecobichon, P. S. Duffey, and M. Y. Popoff. 1998. The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 29:835-50. 9. Bahrani, F. K., G. Massad, C. V. Lockatell, D. E. Johnson, R. G. Russell, J. W. Warren, and H. L. Mobley. 1994. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun 62:3363-71. 10. Barnhart, M. M., and M. R. Chapman. 2006. Curli biogenesis and function. Annu Rev Microbiol 60:131-47. 11. Belas, R. 1994. Expression of multiple flagellin-encoding genes of Proteus mirabilis. J Bacteriol 176:7169-81. 12. Belas, R., M. Goldman, and K. Ashliman. 1995. Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol 177:823-8. 13. Belas, R., R. Schneider, and M. Melch. 1998. Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J Bacteriol 180:6126-39. 14. Benz, R., K. R. Hardie, and C. Hughes. 1994. Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii. Eur J Biochem 220:339-47. 15. Beynon, L. M., A. J. Dumanski, R. J. McLean, L. L. MacLean, J. C. Richards, and M. B. Perry. 1992. Capsule structure of Proteus mirabilis (ATCC 49565). J Bacteriol 174:2172-7. 16. Beynon, L. M., D. W. Griffith, J. C. Richards, and M. B. Perry. 1992. Characterization of the lipopolysaccharide O antigens of Actinobacillus pleuropneumoniae serotypes 9 and 11: antigenic relationships among serotypes 9, 11, and 1. J Bacteriol 174:5324-31. 17. Boll, M., J. Radziejewska-Lebrecht, C. Warth, D. Krajewska-Pietrasik, and H. Mayer. 1994. 4-Amino-4-deoxy-L-arabinose in LPS of enterobacterial R-mutants and its possible role for their polymyxin reactivity. FEMS Immunol Med Microbiol 8:329-41. 18. Bonnet, R., C. De Champs, D. Sirot, C. Chanal, R. Labia, and J. Sirot. 1999. Diversity of TEM mutants in Proteus mirabilis. Antimicrob Agents Chemother 43:2671-7. 19. Braun, V., and T. Focareta. 1991. Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol 18:115-58. 20. Breazeale, S. D., A. A. Ribeiro, and C. R. Raetz. 2003. Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J Biol Chem 278:24731-9. 21. Burall, L. S., J. M. Harro, X. Li, C. V. Lockatell, S. D. Himpsl, J. R. Hebel, D. E. Johnson, and H. L. Mobley. 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 72:2922-38. 22. Burkart, M., A. Toguchi, and R. M. Harshey. 1998. The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc Natl Acad Sci U S A 95:2568-73. 23. Campos, M. A., M. A. Vargas, V. Regueiro, C. M. Llompart, S. Alberti, and J. A. Bengoechea. 2004. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72:7107-14. 24. Chilcott, G. S., and K. T. Hughes. 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694-708. 25. Claret, L., and C. Hughes. 2000. Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J Bacteriol 182:833-6. 26. Coker, C., C. A. Poore, X. Li, and H. L. Mobley. 2000. Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2:1497-505. 27. Drechsel, H., A. Thieken, R. Reissbrodt, G. Jung, and G. Winkelmann. 1993. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol 175:2727-33. 28. Dufour, A., R. B. Furness, and C. Hughes. 1998. Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol Microbiol 29:741-51. 29. Eberl, L., S. Molin, and M. Givskov. 1999. Surface motility of serratia liquefaciens MG1. J Bacteriol 181:1703-12. 30. Evans, M. E., D. J. Feola, and R. P. Rapp. 1999. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 33:960-7. 31. Evanylo, L. P., S. Kadis, and J. R. Maudsley. 1984. Siderophore production by Proteus mirabilis. Can J Microbiol 30:1046-51. 32. Fraser, G. M., J. C. Bennett, and C. Hughes. 1999. Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 32:569-80. 33. Fraser, G. M., L. Claret, R. Furness, S. Gupta, and C. Hughes. 2002. Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology 148:2191-201. 34. Fraser, G. M., and C. Hughes. 1999. Swarming motility. Curr Opin Microbiol 2:630-5. 35. Frick, I. M., P. Akesson, M. Rasmussen, A. Schmidtchen, and L. Bjorck. 2003. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278:16561-6. 36. Fukuoka, T., N. Masuda, T. Takenouchi, N. Sekine, M. Iijima, and S. Ohya. 1991. Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrob Agents Chemother 35:529-32. 37. Givskov, M., J. Ostling, L. Eberl, P. W. Lindum, A. B. Christensen, G. Christiansen, S. Molin, and S. Kjelleberg. 1998. Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:742-5. 38. Gmeiner, J., E. Sarnow, and K. Milde. 1985. Cell cycle parameters of Proteus mirabilis: interdependence of the biosynthetic cell cycle and the interdivision cycle. J Bacteriol 164:741-8. 39. Gottesman, S., and V. Stout. 1991. Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 5:1599-606. 40. Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835-42. 41. Gunn, J. S., K. B. Lim, J. Krueger, K. Kim, L. Guo, M. Hackett, and S. I. Miller. 1998. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27:1171-82. 42. Gygi, D., M. J. Bailey, C. Allison, and C. Hughes. 1995. Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Mol Microbiol 15:761-9. 43. Gygi, D., G. Fraser, A. Dufour, and C. Hughes. 1997. A motile but non-swarming mutant of Proteus mirabilis lacks FlgN, a facilitator of flagella filament assembly. Mol Microbiol 25:597-604. 44. Gygi, D., M. M. Rahman, H. C. Lai, R. Carlson, J. Guard-Petter, and C. Hughes. 1995. A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol Microbiol 17:1167-75. 45. Hancock, R. E. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156-64. 46. Harshey, R. M. 1994. Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol 13:389-94. 47. Harshey, R. M., and T. Matsuyama. 1994. Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91:8631-5. 48. Hay, N. A., D. J. Tipper, D. Gygi, and C. Hughes. 1997. A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J Bacteriol 179:4741-6. 49. Hay, N. A., D. J. Tipper, D. Gygi, and C. Hughes. 1999. A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J Bacteriol 181:2008-16. 50. Hung, R. J., H. S. Chien, R. Z. Lin, C. T. Lin, J. Vatsyayan, H. L. Peng, and H. Y. Chang. 2007. Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1. J Biol Chem 282:17738-48. 51. Jin, T., M. Bokarewa, T. Foster, J. Mitchell, J. Higgins, and A. Tarkowski. 2004. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169-76. 52. Jin, T., and R. G. Murray. 1988. Further studies of swarmer cell differentiation of Proteus mirabilis PM23: a requirement for iron and zinc. Can J Microbiol 34:588-93. 53. Kim, W., and M. G. Surette. 2005. Prevalence of surface swarming behavior in Salmonella. J Bacteriol 187:6580-3. 54. Kumar, A., and H. P. Schweizer. 2005. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486-513. 55. Lacour, S., E. Bechet, A. J. Cozzone, I. Mijakovic, and C. Grangeasse. 2008. Tyrosine phosphorylation of the UDP-glucose dehydrogenase of Escherichia coli is at the crossroads of colanic acid synthesis and polymyxin resistance. PLoS One 3:e3053. 56. Lai, H. C., D. Gygi, G. M. Fraser, and C. Hughes. 1998. A swarming-defective mutant of Proteus mirabilis lacking a putative cation-transporting membrane P-type ATPase. Microbiology 144 ( Pt 7):1957-61. 57. Leon, R., and G. Espin. 2008. flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control. Microbiology 154:1719-28. 58. Macfarlane, E. L., A. Kwasnicka, M. M. Ochs, and R. E. Hancock. 1999. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305-16. 59. Manterola, L., I. Moriyon, E. Moreno, A. Sola-Landa, D. S. Weiss, M. H. Koch, J. Howe, K. Brandenburg, and I. Lopez-Goni. 2005. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 187:5631-9. 60. Margolles, A., A. B. Florez, J. A. Moreno, D. van Sinderen, and C. G. de los Reyes-Gavilan. 2006. Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter. Microbiology 152:3497-505. 61. Mobley, H. L., and R. Belas. 1995. Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol 3:280-4. 62. Mobley, H. L., and G. R. Chippendale. 1990. Hemagglutinin, urease, and hemolysin production by Proteus mirabilis from clinical sources. J Infect Dis 161:525-30. 63. Mobley, H. L., G. R. Chippendale, K. G. Swihart, and R. A. Welch. 1991. Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun 59:2036-42. 64. Mobley, H. L., M. D. Island, and R. P. Hausinger. 1995. Molecular biology of microbial ureases. Microbiol Rev 59:451-80. 65. Moore, R. A., L. Chan, and R. E. Hancock. 1984. Evidence for two distinct mechanisms of resistance to polymyxin B in Pseudomonas aeruginosa. Antimicrob Agents Chemother 26:539-45. 66. Morris, N. S., and D. J. Stickler. 1998. Encrustation of indwelling urethral catheters by Proteus mirabilis biofilms growing in human urine. J Hosp Infect 39:227-34. 67. Morris, N. S., D. J. Stickler, and R. J. McLean. 1999. The development of bacterial biofilms on indwelling urethral catheters. World J Urol 17:345-50. 68. Mouslim, C., and E. A. Groisman. 2003. Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol 47:335-44. 69. Mouslim, C., T. Latifi, and E. A. Groisman. 2003. Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J Biol Chem 278:50588-95. 70. Murphy, C. A., and R. Belas. 1999. Genomic rearrangements in the flagellin genes of Proteus mirabilis. Mol Microbiol 31:679-90. 71. O'Hara, C. M., F. W. Brenner, and J. M. Miller. 2000. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13:534-46. 72. O'Toole, G., H. B. Kaplan, and R. Kolter. 2000. Biofilm formation as microbial development. Annu Rev Microbiol 54:49-79. 73. Parsek, M. R., and P. K. Singh. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677-701. 74. Peerbooms, P. G., A. M. Verweij, and D. M. MacLaren. 1984. Vero cell invasiveness of Proteus mirabilis. Infect Immun 43:1068-71. 75. Peschel, A., and H. G. Sahl. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529-36. 76. Raetz, C. R., C. M. Reynolds, M. S. Trent, and R. E. Bishop. 2007. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295-329. 77. Raetz, C. R., and C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635-700. 78. Rauprich, O., M. Matsushita, C. J. Weijer, F. Siegert, S. E. Esipov, and J. A. Shapiro. 1996. Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178:6525-38. 79. Rosenberger, R. F. 1976. Control of teichoic and teichuronic acid biosynthesis in Bacillus subtilis 168trp. Evidence for repression of enzyme synthesis and inhibition of enzyme activity. Biochim Biophys Acta 428:516-24. 80. Rowley, G., M. Spector, J. Kormanec, and M. Roberts. 2006. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383-94. 81. Rozalski, A., H. Dlugonska, and K. Kotelko. 1986. Cell invasiveness of Proteus mirabilis and Proteus vulgaris strains. Arch Immunol Ther Exp (Warsz) 34:505-12. 82. Rozalski, A., Z. Sidorczyk, and K. Kotelko. 1997. Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61:65-89. 83. Schweizer, H. P., and T. T. Hoang. 1995. An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158:15-22. 84. Senior, B. W., L. M. Loomes, and M. A. Kerr. 1991. The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol 35:203-7. 85. Shafer, W. M., X. Qu, A. J. Waring, and R. I. Lehrer. 1998. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829-33. 86. Sieprawska-Lupa, M., P. Mydel, K. Krawczyk, K. Wojcik, M. Puklo, B. Lupa, P. Suder, J. Silberring, M. Reed, J. Pohl, W. Shafer, F. McAleese, T. Foster, J. Travis, and J. Potempa. 2004. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673-9. 87. Silverblatt, F. J., and I. Ofek. 1978. Influence of pili on the virulence of Proteus mirabilis in experimental hematogenous pyelonephritis. J Infect Dis 138:664-7. 88. Stewart, B. J., J. L. Enos-Berlage, and L. L. McCarter. 1997. The lonS gene regulates swarmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol 179:107-14. 89. Storm, D. R., K. S. Rosenthal, and P. E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723-63. 90. Sturgill, G., and P. N. Rather. 2004. Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol Microbiol 51:437-46. 91. Swihart, K. G., and R. A. Welch. 1990. Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun 58:1861-9. 92. Tam, C., and D. Missiakas. 2005. Changes in lipopolysaccharide structure induce the sigma(E)-dependent response of Escherichia coli. Mol Microbiol 55:1403-12. 93. Toguchi, A., M. Siano, M. Burkart, and R. M. Harshey. 2000. Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308-21. 94. Verstraeten, N., K. Braeken, B. Debkumari, M. Fauvart, J. Fransaer, J. Vermant, and J. Michiels. 2008. Living on a surface: swarming and biofilm formation. Trends Microbiol 16:496-506. 95. von Bodman, S. B., D. R. Majerczak, and D. L. Coplin. 1998. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci U S A 95:7687-92. 96. Walker, K. E., S. Moghaddame-Jafari, C. V. Lockatell, D. Johnson, and R. Belas. 1999. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32:825-36. 97. Wang, Q., Y. Zhao, M. McClelland, and R. M. Harshey. 2007. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol 189:8447-57. 98. Wang, W. B., I. C. Chen, S. S. Jiang, H. R. Chen, C. Y. Hsu, P. R. Hsueh, W. B. Hsu, and S. J. Liaw. 2008. Role of RppA in the regulation of polymyxin b susceptibility, swarming, and virulence factor expression in Proteus mirabilis. Infect Immun 76:2051-62. 99. Weissborn, A. C., Q. Liu, M. K. Rumley, and E. P. Kennedy. 1994. UTP: alpha-D-glucose-1-phosphate uridylyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme. J Bacteriol 176:2611-8. 100. Wiese, A., T. Gutsmann, and U. Seydel. 2003. Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. J Endotoxin Res 9:67-84. 101. Wiese, A., M. Munstermann, T. Gutsmann, B. Lindner, K. Kawahara, U. Zahringer, and U. Seydel. 1998. Molecular mechanisms of polymyxin B-membrane interactions: direct correlation between surface charge density and self-promoted transport. J Membr Biol 162:127-38. 102. Winfield, M. D., and E. A. Groisman. 2004. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl Acad Sci U S A 101:17162-7. 103. Young, M. L., M. Bains, A. Bell, and R. E. Hancock. 1992. Role of Pseudomonas aeruginosa outer membrane protein OprH in polymyxin and gentamicin resistance: isolation of an OprH-deficient mutant by gene replacement techniques. Antimicrob Agents Chemother 36:2566-8. 104. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415:389-95. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44044 | - |
| dc.description.abstract | Proteus mirabilis (奇異變形桿菌) 為腸桿菌科,革蘭氏陰性的兼性厭氧菌,在健康人類腸道屬於正常菌叢,但在長期使用導尿管之免疫低下患者,會造成伺機性感染,常見如泌尿道感染,甚至可能導致腎臟病、肺炎或敗血症的發生。
Polymyxin B (多黏菌素B) 屬抗菌胜肽的一種,以其帶正電荷的結構與細菌細胞外膜的負電荷結合,破壞細胞膜的穩定或形成孔洞,使細胞內的物質外漏進而達到殺菌的效果。研究發現,革蘭氏陰性菌藉由在lipopolysaccharide (LPS) 的lipid A上以4-amino-4-deoxy-L-arabinose (L-Ara4N) 修飾,使細胞表面負電性降低,造成polymyxin B與細胞膜結合減少而產生抗性。 P. mirabilis天生就對polymyxin B具有很高的抗性,但其抗藥機制仍不甚清楚。本研究利用mini-Tn5 transposon mutagenesis來篩選出對polymyxin B具感受性之突變株,結果發現突變處為預測可轉譯出UDP-glucose dehydrogenase 的ugd gene;在Escherichia coli與Salmonella Typhimurium研究中,ugd與polysaccharide及L-Ara4N的合成有關。分析其他表現型,發現ugd突變株有以下特徵:1.表面移行能力喪失 2.鞭毛蛋白合成減少 3.分化成游走細胞的細胞數減少 4.脂多醣缺失 5.溶血酶活性降低 6.入侵細胞能力下降 7.細胞表面構造改變。利用pACYC-184質體將ugd基因補回,發現原先突變株受影響之毒力因子均回復與野生株相當,表示ugd基因影響這些毒力因子的表現。 探究ugd基因與表面移行能力的關係,以real time RT-PCR結果推測,P. mirabilis ugd基因突變造成正向調控flhDC表現之umoA、B、D 膜蛋白以及與鞭毛合成相關的flhDC、fliA及flaA mRNA表現減少;此外,reporter assay結果發現,ugd突變株sigma factor rpoE大量表現,推測ugd基因突變改變細胞表面使RpoE活化。本實驗室先前研究,已知在P. mirabilis中雙組成調控系統RppA/RppB與調控polymyxin B抗性有關,以real time RT-PCR、reporter assay發現在有polymyxin B環境下RppA會正向調控ugd基因的表現。 本論文期望藉由研究與polymyxin B抗性有關的ugd基因,了解P. mirabilis的抗藥機轉,並探討ugd基因突變造成表面移行能力喪失的可能原因。 | zh_TW |
| dc.description.abstract | Proteus mirabilis is a facultative Gram-negative bacterium and a member of the family Enterobacteriaceae. It’s a normal flora in intestines of healthy human. However, it’s an opportunistic pathogen in immunodificent patients who use urethral catheters in long-term therapy. It frequently causes urinary tract infection (UTI), even kidney disease, pneumonia and septicemia.
Polymyxin B is a kind of cationic antimicrobial peptides. While the positive-charge structure of polymyxin B combine with the negative-charge bacterium membrane, the bacterium membrane is disrupted by fatty-acid chains of polymyxin B and leak the cytoplasm contents out. It is known that the modification of the lipid A of the lipopolysaccharides (LPSs) in Gram-negative bacteria by 4-amino-4-deoxy-L-arabinose (L-Ara4N) decreases negative charge of the membrane. In this way, polymyxin B couldn’t bind the membrane, then leading to the resistance of polymyxin B. P. mirabilis is naturally resistant to polymyxin B, but the underlying mechanism of drug resistance is not known clearly. By mini-Tn5 transposon mutagenesis, we selected a mutant that was susceptible to polymyxin B. The Tn5-inserted site was ugd gene that was predicted to encode the UDP-glucose dehydrogenase in P. mirabilis. ugd gene is associated with polysaccharides and L-Ara4N synthesis in Escherichia coli and Salmonella Typhimurium. The ugd mutant exhibited reduced swarming ability, decreased flagellin synthesis, decreased number of swarmer cells, decreased haemolysin activity, decreased cell invasion ability, and alterations of LPS and membrane integrity. Complementation of ugd gene by pACYC-184 vector restored all virulence factor expression in the ugd mutant. We used real time RT-PCR to investigate the mechanism of nonswarming of the ugd mutant. We found the reduced mRNA expression of umoA、B、D membrane proteins which could up-regulate the flhDC operon, and flhDC, fliA and flaA which are class I, II and III genes of flagellar synthesis in the ugd mutant. This implies that ugd gene mutation will affect the expression of umoA、B、D proteins and then decrease the expression of downstream flhDC, fliA and flaA. In addition, reporter assay indicated ugd gene mutation led to increased expression of rpoE. It implies ugd mutation could create a stress condition and can be sensed by RpoE. It has been shown that RppA/RppB, a two-component system, is associated with polymyxin B resistance in P. mirabilis. By real-time RT-PCR and reporter assay, we investigate if ugd gene is under the control of RppA/RppB. The data indicated that RppA regulated ugd gene expression in the presence of polymyxin B. In this study, we investigated the roles of ugd gene in polymyxin B resistance, swarming ability and virulence factor expression in P. mirabilis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:37:32Z (GMT). No. of bitstreams: 1 ntu-98-R96424021-1.pdf: 2503259 bytes, checksum: 5356d5eadb73de98bcd0dca945df571c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝 i
目錄 ii 摘要 vii Abstract ix 第一章 緒論 1 第一節 奇異變形桿菌 (Proteus mirabilis) 介紹 1 第二節 多黏菌素B (Polymyxin B) 的介紹 9 第三節 脂多醣 (Lipopolysaccharides;LPSs) 的介紹 13 第四節 ugd基因的相關研究 14 第五節 研究動機與目的 16 第六節 實驗設計 17 第二章 實驗材料與方法 18 第一節 實驗材料 18 第二節 跳躍子卡匣突變方法 (transposon mutagenesis) 21 第三節 突變基因之鑑定 (identification) 27 第四節 分析突變株毒力因子 (virulence factor) 表現 36 第五節 補償 (complementation) 試驗 58 第六節 探究ugd基因 61 第三章 實驗結果 67 第一節 利用跳躍子突變方法篩選基因並鑑定 67 第二節 ugd基因與毒力因子表現之分析 69 第三節 ugd與表面移行關係之探討以及分析可能的雙組成調控系統 75 第四章 結論與討論 78 第一節 結論 78 第二節 串聯ugd基因與表面移行能力之間的關係 80 第三節 其他菌種ugd基因之研究 82 第四節 Ugd影響的表現型在不同物種間的異同 83 第五節 ugd的調控 84 第五章 表 85 第六章 圖 90 第七章 附錄 111 參考資料 120 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多黏菌素B | zh_TW |
| dc.subject | 奇異變形桿菌 | zh_TW |
| dc.subject | UDP-glucose dehydrogenase | en |
| dc.subject | Proteus mirabilis | en |
| dc.subject | polymyxin B | en |
| dc.title | 奇異變形桿菌中UDP-glucose dehydrogenase影響多黏菌素B的感受性、表面移行及毒力因子表現之研究 | zh_TW |
| dc.title | The roles of UDP-glucose dehydrogenase in polymyxin B susceptibility, swarming and virulence factor expression in Proteus mirabilis. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧麗珍,賴信志,胡小婷 | |
| dc.subject.keyword | 奇異變形桿菌,多黏菌素B, | zh_TW |
| dc.subject.keyword | Proteus mirabilis,polymyxin B,UDP-glucose dehydrogenase, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
