Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44037
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張家歐 | |
dc.contributor.author | Bo-Shiun Huang | en |
dc.contributor.author | 黃柏勳 | zh_TW |
dc.date.accessioned | 2021-06-15T02:37:15Z | - |
dc.date.available | 2011-08-14 | |
dc.date.copyright | 2009-08-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-12 | |
dc.identifier.citation | 1. Sungkyu LEE, “Photolithography and selective etching of an array of quartz tuning fork resonators with improved impact resistance characteristics”, The Japan Society of Applied Physics, 40,pp.5164-5167, Pt. 1, No.8, 2001
2. Sungkyu Lee, “Photolithography and Selective Etching of an Array of Surface Mount Device 32.768 kHz Quartz Tuning Fork Resonators: Definition of Side-Wall Electrodes and Interconnections Using Stencil Mask” , The Japan Society of Applied Physics, 40, pp.5480-5484,Pt. 1, No.9A, 2001 3. Sungkyu Lee, “Fabrication of an array of surface mount device 32.768 kHz quartz tuning fork-type crystals: photolithography and selective etching of an array of quartz tuning fork resonators with subsequent photoresist spray coating”,Vacuum 65(2):pp.161-168, 2002; 4. Sungkyu Lee,”Evaluation and evaporation to exact resonance frequency (32.768KHz) of semifinished and unsealed surface mount device (SMD) quartz tuning fork resonators”,Vacuum;67;pp.267-273,2002. 5. Sungkyu Lee ,“Design optimization of surface mount device 32.768 kHz quartz tuning fork-type crystals using finite element method and statistical analysis of test samples manufactured using photolithography”,Vacuum,68, pp.139-148.2003. 6. Sungkyu Lee, Yangho Moon, Jeongho Yoon, Hyungsik Chung, “Analytical and finite element method design of quartz tuning fork resonators and experimental test of samples manufactured using photolithography 1-significant design parameters affecting static capacitance C0”, Vacuum,75, pp.57-69,2004. 7. Sungkyu Lee, Yangho Moon, Jaekyu Lee, Jeongho Yoon, Ji-Hoon Moon, Jong-hee Kim, Seung-Hyun Yoo, Hyungsik Chung, “Analytical and finite element method design of quartz tuning fork resonators and experimental test of samples manufactured using photolithography 2:comprehensive analysis of resonance frequencies using Sezawa’s approximations”, Vacuum,78,pp.91-105,2005. 8. E. D .REEDY. ; KASS W. J. “Finite-element analysis of a quartz digital accelerometer”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control ,3;pp.464-474,1990. 9. F.V. Holdren, ; B.L.. Norling. “Introduction of quartz vibrating beam accelerometer technology providing capability for low cost, fully digital navigation” Deutsche Gesellschaft fuer Ortung und Navigation, pp. 14.0-14.32, 1989. 10. Mr. Brian L. Norling, “Superflex: A Synergistic Combination of Vibrating Beam and Quartz Flexure Accelerometer Technology” Journal of The Institute of Navigation, 34(4), pp.337-353, 1987-1988. 11. Albert Killen, David Tarrant, David Jensen, “High acceleration, high performance solid state accelerometer development”, IEEE AES Systems Magazine, pp.20-25, 1994. 12. H.Hida, M.Shikida, K. Fukuzawa, S.Murakami, Ke.Sato, K. Asaumi, Y.Iriye, Ka. Sato. “Fabrication of a Quartz Tuning-Fork Probe with a Sharp Tip for AFM Systems” Sensors and Actuators A: Physical, 148,pp.311-318,2008. 13. Hideaki Itoh, Tomoyuki Yuasa.”An Analysis of Frequency of a Quartz Crystal Tuning Fork by Sezawa’s Theory” IEEE International Frequency Control Symposium, pp.921-925,1998. 14. Hideaki Itoh, Takashi Matsumoto, “An analysis of frequency of a quartz crystal tuning fork by sezawa’s approximation-the effect of clamped position of its base”, 1999 Joint Meeting EFTF-IEEE IFCS, pp.494-500,1999. 15. Hideaki Itoh, Wakasato, Nagano, Yook-Kong Yong, “An Analysis of Frequency of A Quartz Crystal Tuning Fork By Sezawa’s Approximation and Winkler’s Foundation Of The Supporting Elinvar Alloy Wire” IEEE/EIA International Frequency Control Symposium and Exhibtion,pp.420-424, 2000. 16. He Jin, Chen Zhaoyang, Lin Jiang, Dai Jingmin, “A New Low-Cost High –Performance Quartz Tuning-Fork Temperature Sensor” , Journal Sensor Review, 23(2),pp.134-142, 2003. 17. Ville Kaajakari, Tomi Mattila, Aarne Oja, Jyrki Kiihamaki, Heikki Seppa, “Square-Extensional Mode Single-Crystal Silicon Micromechanical Resonator for Low-Phase-Noise Oscillator Applications” IEEE Electron Device Letters, 25(4),2004. 18. Christer Hedlund, Ulf Lindberg, Urban Bucht and Jan Söderkvist, “Anisotropic etching of Z-cut quartz”, J. Micromech. Microeng. 3, pp.65~73, 1993 19. Jiashi Yang, An Introduction to The Theory of Piezoelectricity, Springer, 2005 20. Jiashi Yang, Analysis of Piezoelectric Devices, World Scientific, 2006 21. Jiashi Yang, The Mechanics of Piezoelectric Structures, World Scientific, 2006 22. H.F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969. 23. R. Bechmann, “Elastic and Piezoelectric Constants of Alpha-Quartz”, Physical Review, 110(5), pp.1060-1061, 1958. 24. IEEE Standard on Piezoelectricity, Institute of Electrical and Electronics Engineers, Inc,1987. 25. 經濟部礦產局網站http://www.mine.gov.tw/main.asp 26. J. Zelenka, Piezoelectric Resonators and Their Applications, Oxford, New York ,1986. 27. 述本正美, 廖詩文, “高頻通訊用晶體振盪器的技術及發展”, 電子與材料雜誌, 第13期, pp.126-131, 2002 28. Walter Guyton Cady, Piezoelectricity : an introduction to the theory and applications of electromechanical phenomena in crystals, McGraw-Hill, New York,1946 29. J. F. NYE, Physical Properties of Crystals, Oxford University Press, 1985 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44037 | - |
dc.description.abstract | 本文主要以有限元素法數值模擬 (YXl)-88°單晶石英加速規的自然頻率,各別數值模擬單樑、音叉、雙音叉的共振頻率,並對中間樑長度、中間樑寬度、厚度、中間樑間隙寬度、質量塊大小、質量塊型形狀與中間樑截面形狀等參數的改變,以求對加速規自然頻率的影響,進而探討影響石英加速規自然頻率的重要參數,以求得最佳化的石英加速規尺寸設計。最後,導入電極質量及電場所造成的壓電效應來計算石英加速規的自然共振頻率。從本文研究中可以得到各項幾何參數變化量對頻率的影響大小、求得特殊頻率的尺寸規格以及當雙樑寬度不相同時,對頻率的影響程度差異。 | zh_TW |
dc.description.abstract | This thesis mainly simulates the natural frequency of the (YXl)-88° single-crystal quartz accelerometers by Finite Element Method; by simulating the resonant frequency of the beam, tuning fork and double-ended tuning fork, along with adjustments made in parameters of the length, width and thickness of the beam, the width of the gap, and the size and shape of the proof mass. The thesis aims at understanding the influence of these adjustments on the resonant frequency of single-crystal quartz accelerometers, and further, at finding the important parameters that would affect it, so as to derive the best design of the single-crystal quartz accelerometers. And finally, the piezoelectric effect caused by the electrode and electric field is induced, in order to calculate the natural frequency of the single-crystal quartz accelerometers. From this thesis, we are able to know the changes of natural frequency in accordance with different geometric parameters, the sizes of special natural frequency, and that as the width of beams differs, the
influence of natural frequency differs as well. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:37:15Z (GMT). No. of bitstreams: 1 ntu-98-R96543064-1.pdf: 3291942 bytes, checksum: 7d5be448158c4c02cef576a4fdd21499 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要……………………………………………………………….Ⅰ
Abstract…………………………………………………………Ⅱ 目錄……………………………………………………………….Ⅲ 表目錄……………………………………………………………Ⅵ 圖目錄……………………………………………………………Ⅷ 第1章 導論……………………………………………………….1 1.1 前言……………………………………………………1 1.2 單晶石英加速規簡介……………………………………1 1.3 文獻回顧與研究動機………………………………4 1.4 本文目的與內容………………………………………12 第2章 石英材料性質…………………………………………14 2.1 單晶石英材料特性簡介………………………………14 2.1.1 石英晶體物理特性…………………………………14 2.1.2 石英晶體化學特性…………………………………16 2.1.3 石英切面…………………………………………16 2.2 石英材料係數…………………………………………17 2.2.1 彈性材料係數………………………………………17 2.2.2 石英材料常數………………………………………19 2.2.3 石英(YXl)-88°材料係數推導……………………22 2.3 基本壓電原理……………………………………………23 第3章 數值模擬………………………………………………26 3.1 有限元素法基本概念……………………………………26 3.2 有限元素法的分析過程…………………………………29 3.3 COMSOL有限元素分析軟體………………………………31 3.4 統御方程式……………….……………………………………33 3.5 模擬模型………………………………………………………34 3.6 側邊電極分佈..………………………………………………40 第4章 模擬結果………………………………………………43 4.1 單樑分析…………………………………………………43 4.1.1 網格測試……………………………………………43 4.1.2 分析結果……………………………………………45 4.1.3 傾斜2°切面單樑分析………………………………47 4.2 雙端固定音叉式加速規分析……………………………48 4.2.1 網格測試……………………………………………… …49 4.2.2 分析結果…………..………………………………………50 4.2.3 傾斜2°切面加速規分析………..……………………59 4.3 結構幾何參數變化分析…………………………………59 4.3.1 厚度分析……………………………………………60 4.3.2 細樑長度分析………………………………………64 4.3.3 細樑寬度分析………………………………………67 4.3.4 質量塊長度分析……………………………………70 4.3.5 質量塊寬度分析……………………………………72 4.3.6 間隙寬度分析………………………………………75 4.3.7 中心寬度分析………………………………………77 4.4 雙樑寬度差對水平振盪頻率影響……………………..……80 4.5表面金屬電極及壓電效應分析……………………………85 4.6試求特殊頻率之加速規……………………………………86 4.7數值模擬與解析解比較……………………………………87 第5章 結論與未來展望…………………………………………90 參考文獻…………………………………………………………………92 附錄A…………………………………………………………………….95 附錄B……………………………………………………………………107 附錄C……………………………………………………………………110 | |
dc.language.iso | zh-TW | |
dc.title | 單晶石英加速規自然頻率之有限元素法分析 | zh_TW |
dc.title | Finite Element Method Analysis of Natural Frequency of Single-Crystal Quartz | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 張簡文添 | |
dc.contributor.oralexamcommittee | 張所鋐,謝發華,陳柏志 | |
dc.subject.keyword | 數值模擬,有限元素法,石英加速規,自然頻率,壓電效應, | zh_TW |
dc.subject.keyword | simulation,finite element method,quartz,accelerometer,natural frequency,piezoelectric effect, | en |
dc.relation.page | 112 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
dc.date.embargo-lift | 2300-01-01 | - |
Appears in Collections: | 應用力學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-98-1.pdf Restricted Access | 3.21 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.