請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44017完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周瑞仁(Jui-Jen Chou) | |
| dc.contributor.author | Yuan-Lin Liu | en |
| dc.contributor.author | 劉遠霖 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:36:26Z | - |
| dc.date.available | 2012-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-13 | |
| dc.identifier.citation | 1. AI motor 1001 Manual. 2006. On-line available at: www.robotshop.ca/PDF/rbmeg01_AIMOTOR_1001.pdf. Accessed 25 September 2006.
2. Burdick, J. W., J. Radford, and G. S. Chirikjian. 1993. A “sidewinding” locomotion gait for hyper- redundant robots. IEEE International Conference on Robotics and Automation. Atlanta, GA. 2-6 May. 3:101-106. 3. Casper, J. and R. R. Murphy. 2003. Human–robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics. 33(3): 367-385. 4. Chen, L., Y. Wang, S. Ma, and B. Li. 2004. Studies on lateral rolling locomotion of a snake robot. IEEE International Conference on Robotics and Automation. New Orleans, LA. 26 April-1 May. 5: 5070–5074. 5. Chirikjian, G. S. and J. W. Burdick. 1995. The kinematics of hyper-redundant robotic locomotion. IEEE Transactions on Robotics and Automation. 11(6):781–793. 6. CNN.com. 2001. FBI targets Florida sites in terrorist search. On-line available at: archives.cnn.com/2001/US/09/11/ america.under.attack/index.html. Accessed 22 September 2001. 7. Mathworks. 2004. Genetic Algorithm and Direct Search Toolbox User's Guide. On-line available at:www.mathworks.com/access/helpdesk/help/pdf_doc/ gads/gads_tb.pdf. Accessed 1 June 2009. 8. Hirose Robotic Lab. 2006. On-line available at: www-robot.mes.titech.ac.jp/robot/snake_e.html. Accessed 1 October 2006. 9. Hirose, S. 1993. Biologically Inspired Robots (Snake-like Locomotors and Manipulators). New York: Oxford University Press. 10. Holland, J. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press. 11. Hsieh, C. Y. 2007. Gait planning and analysis for stair climbing of snake robot. Master Thesis. Taiwan: National Taiwan University, Department of Bio-Industrial Mechatronics Engineering. 12. Klaassen, B. and K. L. Paap. 1999. GMD-snake 2: A snake-like robot driven by wheels and a method for motion control. IEEE International Conference on Robotics and Automation ICRA'99. Detroit, MI. 10-15 May. 4:3014-3019. 13. Matsuno, F., and H. Sato. 2005. Trajectory tracking control of snake robots based on dynamic model. IEEE International Conference on Robotics and Automation. Barcelona, Spain. 18-22 April. pp: 3029-3034. 14. Mori, M. and S. Hirose. 2001. Develop of active cord mechanism ACM-R3 with agile 3D mobility. IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, HI. 29 Oct. -3 Nov. 3: 1552-1557. 15. NASA snakebot. Available at: http://history.arc.nasa.gov/Astrogram/ Astrogram_2000_10_16.pdf. Accessed 15 March 2007. 16. Nilsson, M. 1997. Snake robot free climbing. IEEE International Conference on Robotics and Automation. Albuquerque, NM. 20-25 April. 4: 3415- 3420. 17. Snyder, R. 2001. Robots assist in search and rescue efforts at WTC. IEEE Robotics and Automation Magazine 8: 26–28. 18. Tanev, I., T. Ray, and A. Buller. 2005. Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Transactions on Robotics. 21(4): 632-645. 19. Wei, C. C. 2006. Development of snake robot remotely controlled by GSM module and its gait planning. Master Thesis. Taiwan: National Taiwan University, Department of Bio-Industrial Mechatronics Engineering. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44017 | - |
| dc.description.abstract | 本研究提出一套使關節串接型機器蛇朝向攀階目標位置移動之一般化架構,並運用基因演算法(Genetic Algorithms)自動產生攀階步態。由於目前機器蛇攀階時缺乏系統化的方法以產生攀階步態。本研究依此架構發展基因演算法的適應性函數作為攀階過程的評分標準。此標準分為六階段,以各階段提供期望中的空間絕對座標做為評估標準,建立一般化規則。此規則可根據機器蛇每節長度與節數、樓梯高度以及空間位置的關係,推算各階段中各節的座標位置。本研究結合Matlab基因演算工具與Webots移動式機器人模擬軟體,配合上述六階段的適應性函數,產生一系列的攀階角度,即所謂的步態,並將所得之攀階步態應用於真實系統中。實測結果顯示,在機器蛇節數為12、樓梯高度為16公分之情況下,機器蛇執行初始攀階步態後,各節位置與目標位置的平均差異為7公分,在同樣執行個體數為30、經歷30個演化世代之步態後,平均差異降至4公分。據此,可證明本研究所提出之一般化適應性函數評分標準,可達到自動產生較佳的攀階步態之目的。增加演化個體或演化世代,一般可使演化的步態更接近期望之目標位置,但相對地演化的時間亦將拉長。使用者可視實際需求,在精準度與演化時間之間做出取捨。 | zh_TW |
| dc.description.abstract | In the study, we propose a generalized structure for articulated snake robots to move towards the aim position when ascending the stairs. In addition, we exploit Genetic Algorithms to automatically generate stair-ascending gaits for snake robots. Since there is no systematic approach for planning stair-ascending gaits, we base on the proposed structure to generate such gaits and to establish a generalized GA fitness measure for evaluating the process of climbing stairs. The fitness measure falls into 6 stages, each of which specifies the absolute positions for each module of the snake robot as the evaluation standard. We conclude the standard and develop a generalized fitness measure. According to the sizes of each module, the total number of modules of the snake robot, the height of the stair, and the spatial relationships between them, we can infer all the absolute positions for each module of the snake robot in each stage. We further integrate Matlab Optimtool GA and Webots, a mobile robot simulation platform, along with the 6-stage fitness measure, to generate a series of angles for each module of the snake robot to accomplish the task of ascending stairs. Following that, we apply the series of angles, or the gait, to the snake robot in the real, physical world. One real-world result shows the gait for a 12-module snake robot with 16 cm stair is improved from an average deviation of 7 cm for each module between the final position of the snake robot and our aim to an average deviation of 4 cm for each module within the evolution of only 30 individuals for 30 generations, meaning that the integration of Matlab Optimtool GA and Webots along with our 6-stage fitness evaluation measure works for automatically generating the stair-climbing gait for snake robot to better move towards its aim position. Generally speaking, the resultant gait can be improved, making the snake robot reach closer to its aim position, by increasing the individuals or the generations in GA evolution, yet it may relatively take more time for GA to produce the resultant gait. Therefore, users can strike a balance between the final position of the snake robot and the time for GA evolution according to their needs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:36:26Z (GMT). No. of bitstreams: 1 ntu-98-R95631004-1.pdf: 3675145 bytes, checksum: e0eca706d51aa1488c87aedcbc64b318 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv Table of Contents vi Figures vii Tables viii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Representatives of Articulated Snake Robots 3 2.2 Gait Planning Techniques 6 Chapter 3 Materials and Methods 10 3.1 Pitch-yaw Articulated Snake Robot 12 3.2 Generalized Six-stage Structure and Initial Stair-ascending Gait 14 3.3 Matlab Optimtool GA Solver 18 3.3.1 Format of an Individual 20 3.3.2 Fitness Functions 21 3.3.3 Genetic Operations 29 3.3.4 Evolutionary Parameters 31 3.4 Webots Mobile Robot Simulation 32 3.4.1 Open Dynamics Engine (ODE) 33 3.4.2 Scenario Settings in Webots 34 3.4.3 GPS Sensor in Webots 35 3.4.4 Controller for Snake Robot in Webots 36 3.5 Real-world Validation 37 3.5.1 Scenario Settings in Real-world 37 3.5.2 Image-based Real-world Validation 38 Chapter 4 Results and Discussion 39 4.1 Initial Gait and the Generalized 6-stage Fitness Measure 39 4.2 Simulation Test Result 42 4.3 Real-world Test Result 44 4.4 Discussion 46 Chapter 5 Conclusions 49 References 51 | |
| dc.language.iso | en | |
| dc.subject | 適應性函數 | zh_TW |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | 階梯攀爬步態 | zh_TW |
| dc.subject | 機器蛇 | zh_TW |
| dc.subject | snake robot | en |
| dc.subject | stair-ascending gait | en |
| dc.subject | fitness measure | en |
| dc.subject | Genetic Algorithms | en |
| dc.title | 利用基因演算法自動產生機器蛇攀階步態 | zh_TW |
| dc.title | Automatic Generation of Stair-ascending Gait for Snake Robot Using Genetic Algorithms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林達德,莊勝雄,黃緒哲 | |
| dc.subject.keyword | 基因演算法,階梯攀爬步態,機器蛇,適應性函數, | zh_TW |
| dc.subject.keyword | Genetic Algorithms,stair-ascending gait,snake robot,fitness measure, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
