Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44003
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪挺軒(Ting-Hauan Hung)
dc.contributor.authorHsin-Yueh Liangen
dc.contributor.author梁心玥zh_TW
dc.date.accessioned2021-06-15T02:35:53Z-
dc.date.available2014-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-13
dc.identifier.citation王惠亮、王金池、邱人璋、孫明賢. 1978. 台灣番木瓜輪點病研究初報. 植保會刊 20: 133- 140.
王德男. 1991. 台灣木瓜栽培之回顧與展望. 杜金池,程永雄,顏昌瑞主編. 台灣果樹之生產及研究發展研討會專刊 357-371. 台灣省農業試驗所試驗特刊第35號.
王震宇. 1988. 木瓜輪點病毒系統之細胞病理學研究. 國立台灣大學植物病蟲害學研究所碩士論文. pp.50.
王啟正. 1997. 番木瓜抗木瓜輪點病毒遺傳差異性之研究. 國立台灣大學園藝學研究所碩士論文. pp. 107.
王仁晃. 2001. 木瓜輪點病毒對番木瓜抗感病品種(系) 光合成的影響. 國立臺灣大學園藝學研究所碩士論文. pp. 86.
包慧俊。2000。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。博士論文。中興大學。135頁。
包慧俊、龔怡蓉、鄭櫻慧、葉錫東。2006抗輪點病毒與畸葉嵌紋病毒基因轉殖木瓜之育成。木瓜產業研討會專刊。王德男、李文立編。行政院農業委員會農業試驗所。台中縣。134頁。
吉井三惠子. 1986. 影響木瓜輪點病毒病徵表現與變異之因素. 台灣大學植物病蟲害研究所碩士論文. pp.128.
行政院農業委員會。2007農業統計年報。台北市。 pp. 365
吳寶芬、黃美華,2003。我國木瓜產業面臨的問題及因應措施。行政院農業委員會網站(http://www.coa.gov.tw/view.php?catid=3934)
吳建銘。2007。木瓜輪點病毒(SMN、DF系統)與木瓜畸葉嵌紋病毒在不同番木瓜品系上的交互作用。碩士論文。台灣大學。140頁
李宜霞。2006。木瓜輪點病毒之Real-Time RT-PCR定量偵測技術之研發與應用。碩士論文。台灣大學。110頁
呂理燊、李啟彰、黃德昌。1980。Erwinia cypripedii引起之木瓜黑腐病。植物保護學會會刊。台灣大學。110頁。
林正忠. 1980. 木瓜輪點毒素病之系統及交叉保護. 國立臺灣大學植物病蟲害學研究所博士論文. pp . 115.
徐秀鳳. 1989. 欲防毒素病最有效的木瓜網室栽培. 興農雜誌. 242:14-22.
徐悅淳. 2001. 重要potyvirus快速鑑定系統之建立. 台灣大學植物病理學研究所碩士論文. pp.33.
翁芬華. 1981. 木瓜輪點病毒之變異性. 台灣大學植物病蟲害研究所碩士論文. pp.73.
張春蕉. 1995. 番木瓜輪點病的增殖與擴散. 國立台灣大學園藝所碩士論文. pp. 64.
張世揚. 2000. 植物防疫之重要性. 苗栗區農情月刊10: 1-2.
郭耀庭。2001。親子回歸法估算番木瓜抗木瓜輪點病毒病之遺傳力。碩士論文。台灣大學。60頁。
陳光慧. 1986. 對木瓜輪點病病毒之單源抗體試製與其對病毒系統之血清學反應. 台灣大學植物病蟲害研究所碩士論文. pp.129.
陳脈紀、劉顯達、王惠亮、位國慶、邱人璋. 1976. 木瓜輪點病之電子顯微鏡觀察. 植物保護學會會刊論文摘要 18:399.
陳脈紀. 1984. 木瓜輪點病毒之電子顯微鏡觀察. 植物保護學會會刊. 26: 23-31.
楊小瑩。2008。木瓜畸葉嵌紋病毒的基因體分析及其與木瓜輪點病毒在木瓜上的交互作用關係研究。碩士論文。台灣大學。79頁
葉錫東. 1999. 轉基因作物應用於植物保護之現況. 植物保護學會會刊. 4:87-106.
葉慈容. 2004. 利用逆墨點雜合法鑑定九種馬鈴薯Y屬病毒. 國立台灣大學植物病理與微生物學研究所碩士論文. pp.55.
廖奕晴. 2004. 台灣木瓜輪點病毒系統之變異與鑑別及快速檢測. 國立台灣大學植物病理與微生物學研究所碩士論文. pp.107.
蔡文惠. 1995. 木瓜接種不同輪點病毒系統後的反應. 國立台灣大學園藝所碩士論文. pp. 66.
關政平. 1990. 木瓜輪點病毒之單元抗體的特異性. 台灣大學植物病蟲害研究所碩士論文. pp.127.
龔怡蓉。2004。木瓜輪點病毒及木瓜畸葉嵌紋病毒雙重抗性轉基因木瓜之育成及木瓜畸葉嵌紋病毒單株抗體之製備。碩士論文。中興大學。79頁。
Adsuar, J. 1946. Studied on virus disease of papaya (Carica papaya) in PuertoRico III-Property studies of papaya mosaic virus. Univ. Puerto Rico Agr. Expt. Sta. Tech. 4: 7-11.
Adsuar, J. 1972. A new virus disease of papaya (Carica papaya) in Puerto Rico. J. Agric. Univ. P. R. 56: 397-402.
Agindotan, B. O., Shiel, P. J., and Berger, P.H. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. J. Virol. Methods 142 (1-2): 1-9
Bau, H.J., Cheng, Y.H., Yu, T.A., Yang, J.S., and Yeh, S.D. 2003. Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93: 112-120.
Brunt, A., Crabtree, K., and Gibbs, A. 1990. Virus of tropical plants: papaya ringspot potyvirus. CABI Wallingford U. K. 374-377.
Capoor, S.P. and Varma, P.M. 1948. A mosaic disease of Carica papaya L. in the Bombay Province. Curr. Sci. 17: 265-266.
Capoor, S.P. and Varma, P.M. 1958. A mosaic disease of papaya in Bombay. Indian J. Agr. Sci. 28: 225-233.
Cohn., and Duncan, L. W. 1990 Nematode parasites of subtropical and tropical fruit trees. In: Luc, M., Sikora, R.A., and Bridge, J(eds) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CAB International, Wallingford, Oxon, UK. P.347-362.
Conover, R.A. 1962. Virus disease of the papaya in Florida. Phytopathology 52: 6.
Conover, R. A.1964. Distortion ringspot, a severe virus disease of papaya in Florida. Fla. State Hort. Soc. 77:440-444
Cook, A.A. and Milbrath, G. 1971. Virus disease of papaya on Oahu (Hawaii) and identification of additional diagnostic host plants. Plant Dis. Rep. 55: 785-787.
Cook, A.A. 1972. Virus disease of papaya. Fla. Agr. Expt. State Inst. Food and Agr. Sci. 1-9.
Davis, R.I., Mu, L., Maireroa, N., Wigmore, W.J., Grisoni, M., Bateson, M.F., and Thomas, J.E. 2005. First records of the papaya strain of Papaya ringspot virus (PRSV-P) in French Polynesia and the Cook Islands. Aust. Plant Pathol. 34: 125-126.
De Bokx, J.A. 1965. Hosts and electron microscopy of two papaya viruses. Plant Dis. Rep. 49: 742-746.
De la Rosa, M. and Lastra, R. 1983. Purification and partial characterization of papaya ringspot virus. Phytopathology 106: 329-336.
Edwardson, J.R. 1974. Some properties of the potato virus Y group. Fla. Agric. Exp. Stn. Monogr. 4. 398.
Edwardson, J.R., Christie, R.G., and Ko, N.J. 1984. Potyvirus cylindrical inclusion-Subdivision-IV. Phytopathology 74: 1111-1114.
Erwin , D. C., and Ribiero, O. K.1996.Phytophora Diseases Worldwide. APS press, St. Paul, Minnesota
Fuchs, M., and Gonsalves, D. 2007. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu. Rev. Phytopathol. 45 : 173-202
Gibbs, A. and Mackenzie, A. 1997. A primer pair for amplifying part of the genome of all potyvirids by RT-PCR. J. Virol. Meth. 63: 9-16.
Gibson, U.E.M., Heid, C.A., and Williams, P.M. 1996. A novel method for real time quantitative RT-PCR. Genome Res 6:995–1001.
Gonsalves, D. and Ishii, M. 1980. Purification and serology of papaya ringspot virus. Phytopathology 70: 1028–1032.
Gosálvez, B., Navarro, J.A., Lorca, A., Botella, F., Sánchez-Pina, M.A.
and Pallás, V. 2003. Detection of Melon necrotic spot virus in water
samples and melon plants by molecular methods. J. Virol. Methods, 113,
87–93
Heid, C.A., Stevens, J., Livak, K.J., and Williams, P.M. 1996. Real time quantitative PCR. Genome Res. 6: 986-994.
Higuchi, R., Dollinger, G., Walsh, P.S., and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10: 413-417.
Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11: 1026-1030.
Holland, P.M., Adbramson R.D., Watson, R., and Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5’-3’ exonuclease activity of Thermus aquaticus DNA polymerase. Pro. Natl. Acad. Sci. U.S.A. 88: 7276-7280.
Hung, T.H., Wu, M.L., and Su, H.J. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147: 599-604.
Hung, T.H., Wu, M.L., and Su, H.J. 2000. A rapid method based on the one-step reverse transcriptase-polymerase chain reaction (RT-PCR) technique for detection of different strains of citrus tristeza virus. J. Phytopathol. 148: 469-475.
Ishii, M. and Holtzamann, O.V. 1963. Papaya mosaic disease in Hawaii. Plant Dis. Rep. 47: 947-951.
Ishii, M. 1972. Observations on the spread of papaya ringspot virus in Hawaii. Plant Dis. Rep. 56: 331-333.
Jaizme-Vega, M.C., Rodriguez-Romero, A.S., and Nunez, L.A.B. 2006. Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61:151-162
Jensen, D.D. 1949b. Papaya ringspot virus and its insect vector relationships. Phytopathology 39: 212-220.
Khurana, S.M. and Bhargava, K.S. 1970. Induce apocarpy and “double papaya” fruit formation in papaya with distortion ringspot virus infection. Plant Dis. Rep. 54:181-183.
Khurana, S.M.P.1971. Studies on interactions between Oidium caricae Noack and Viruses of papaya (Carica papaya L.) J. Phytopathol. 70(2):181-184
Kiritani, K. and Su, H.J. 1999. Papaya ring spot, banana bunchy top, and citrus greening in Asia and Pacific region:occurrence and control strategy. FFTC. 33:23-30.
Lakowicz, JR. 2006. Principles of Fluorescence Spectroscopy. NY, USA: Plenum;
Lin, C.C., Su, H.J., and Wang, D.N. 1989. The control of papaya ringspot virus in Taiwan R.O.C. ASPAC Food and Fertilizer Tech. 114: 1-13.
Livak K.J., Flood, S.P.A., Marmejo J., Giusti W. and Deetz K., 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR products and nucleic acid hybridization, PCR Methods Appl. 4: 357–362.
Mason, G., Caciagli, P., Accotto, G. P., and Noris, E. 2008. Real-Time PCR for the quantitation of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. J. Virol. Methods 147(2) :282-289.
Mumford, R. A., Walsh, K., Barker, I., and Boonham, N. 2000. Detection of potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology 90(5): 448-453
Namba, R. and Higa, S.Y. 1977. Retention of the inoculativity of the papaya mosaic virus by the green peach aphid. Proc. Haw. Ent. Soc. 22: 491-494.
Pourrahim, R., Farzadfar, Sh., Golnaraghi, A.R., and Shahraeen, N. 2003. First report of papaya ringspot virus on papaya in Iran. Plant Dis. 87: 1148.
Purcifull, D.E., Edwardson, J., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses, No. 292 (No. 84 revised).
Quiot-Douine, L., Purcifull, D.E., Hiebert, E., and de Mejia, M.V.G. 1986. Serological relationships and in vitro translation of an antigenically distinct strain of papaya ringspot virus. Phytopathology 76: 346-351.
Ridings, W.H., Zettler, F.W., and Conover, R.A. 1978. Distortion ringspot of papaya. Plant Path. Cir. No. 184. Fla. Dept. Agr. and Consume Serv. Div. of Plant Industry.
Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, NY. 2 nd ed.
Samuel, G. 1934. The movemmt of tobacco mosaic virus within the plant. Ann Appl Biol 21: 90–111
Schaefers, G.A. 1969. Aphid vectors of the papaya mosaic virus in Puerto Rico. J. Agr. Univ. Pur Puerto Rico. 53:1-13.
Simmonds, J.H. 1965. Papaw disease. Queensland Agric. J.91:666-667
Singh, A.B. 1969. A new virus disease of Carica papaya in India. Plant Dis. Rep. 53: 267-269.
Singh, A.B. 1971. Transmission of papaya leaf reduction virus by Myzus persicae. Plant Dis. Rep. 55: 526-529.
Singh, V.S., and Nath, R.P. 1996. Pathogenicity of rootknot nematode Meloidogyne incognita on papaya. Indian J. Nematol. 26:115-116.
Smith, F.E.V. 1928. Plant disease in Jamaica in 1928. Ann. Rep. Agr. Jamaica for the year ended 31st Dec. p. 1-20.
Story, G.E. and Haliiwell, R.S. 1969. Identitification of distortion ringspot virus disease of papaya in the Domincan Republic. Plant Dis. Rep. 53: 757-760.
Thomas, J.E. and Dodman, R.L. 1993. The first record of papaya ringspot virus-type P in Australia. Aust. Plant Pathol. 22: 2-7.
Tennant, P.F., Gonsalves, C., Ling, K.S., Fitch, M., Manshardt, R., Slightom, L.J, and Gonsalves, D. 1994. Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84:1359-1366.
Tennant, P., Fermin, G., Fitch, M.M., Manshardt, R.M., Slightom, J.L., and Gonsalves, D. 2001. Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. Euro. J. Plant Pathol. 107: 645-653.
Valasek, M.A. and Joyce, J.R. 2005. The power of real-time PCR. Adv. Physiol. Educ. 29: 151-159.
Vawdrey, L. L., Grice, K.E., Peterson, R. A., and De Faveri, J. 2004. The use of metalaxyl and potassium phosphonate mounds, and orhanic and plastic mulches, for the management of Phytophthora root rot of papaya in far northern Queensland. Aust. Plant Pathol. 33(1):103-107
Vingano, F., and Stevens, M. 2007. Development of a multiplex immunocapture-RT-PCR for simultaneous detection of BMYV and BChV in plants and single aphids. J. Virol. Methods 146(1-2) :196-201
Walker, N.J. 2002. A technique whose time has come. Science 296: 557-558.
Wang, C. H. and Yeh, S. D. 1997. Divergence and conservation of the genomic RNAs of Taiwan and Hawaii strains of papaya ringspot potyvirus. Arch. Virol. 142: 271-285.
Wang, H.L., Yen, S.D., Chiu, R.J., and Gonsalves, D. 1987. Effectiveness of cross-protection by mild mutants of papaya ringspot virus for control of ringspot disease of papaya in Taiwan. Plant dis. 71: 491-497.
Wittwer, C.T., Herrmann, M.G., Moss, A.A. and Rasmussen, R.P. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques.22, 130-131, 134-138.
Yeh, S.D., Gonsalves, D., and Provvidenti, R. 1984b. Comparative studies on host range and serology of papaya ringspot virus and watermelon mosaic virus 1. Phytopathology 74: 1081-1085.
Yeh, S.D. and Gonsalves, D. 1985. Translation of PRSV RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virol. 143: 260-271.
Yeh, S.D., Gonsallves, D., Wang, H.L., Namba, R., and Chiu, R.J. 1988. Control of papaya ringspot virus by cross protection. Plant Dis. 72: 375-380.
Yeh, S.D., Jan, F.J., Chiang, C.H., Doong, T.J., Chen, M.C., Chung, P.H., and Bau, H.J. 1992. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73, 2531-2541.
Yeh, S.D. 1994. Comparison of the genetic organization of papaya ringspot virus with other potyvirus. Plant Pathol. 3: 54-64.
Zettler, F.W., Edwardson, J.R., and Purcifull, D.E. 1968. Ultramicropic differences in inclusions of papaya mosaic virus and papaya ringspot virus correlated with differential aphid transmission. Phytopathology 58: 332-335.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44003-
dc.description.abstract木瓜輪點病由木瓜輪點病毒 (Papaya ringspot virus, PRSV) 所引起,是木瓜重要的病害之一。台灣目前的PRSV依據在木瓜上所引起的病徵不同,再細分為各種不同系統,包括可引起葉片產生嚴重嵌紋的嚴重嵌紋系統 (severe mottling, SM strain )、造成葉片嚴重嵌紋且畸形扭曲的畸型系統 (deformation, DF strain),以及造成葉片嚴重嵌紋且伴隨有壞疽病斑的嚴重嵌紋壞疽系統 (severe mottling with necrosis, SMN strain); DF為目前台灣田間最常見之系統,而SMN會在冷熱交替之際造成快速萎凋的病徵,被視為最具摧毀潛力的系統。本論文嘗試在不同品種的木瓜上接種不同系統的PRSV (包括DF與SMN系統),以即時定量反轉錄聚合酶連鎖反應 (Real-Time RT-PCR) 的分子檢測技術追蹤病毒在木瓜在根、莖、葉等部位上增殖情形,並且進一步做定量比較。除了可得知PRSV在寄主體內的真正分佈狀況外,也能推測病毒移動的趨向,且掌握到各病毒系統在木瓜寄主最終之飽和病毒量,更深一層了解各不同病毒系統的病原性。此外,本論文也以不同木瓜品系進行試驗,比較PRSV在台農二號、紅妃、台大八號等不同品系木瓜的增殖動態與分佈情況。本論文以DF與SMN二系統進行接種實驗,並定期追蹤病毒的增殖動態。將台農二號、紅妃、台大八號三個木瓜品種個別接種DF及SMN系統後,其移動的路徑皆頗為一致,發現PRSV自接種葉感染後會先向根部移動,逐步拓展至莖部,爾後再向上轉移到葉部。以PRSV/DF為接種源時,台大八號品種在寄主植株各部位皆最先被測出病毒訊號,如根部與莖部平均接種後第二天即可測出,葉部則是在接種後4天可以測到,顯示病毒在台大八號上的移動十分迅速;但到達葉部後病毒增殖並不順利而一直維持於較低濃度 (約103 copies);台農二號各部位都較晚被偵測到,根部與莖部分別在接種後4天與8天被測到,10天後病毒才達葉部,但後勢看漲,24天後在葉部之病毒量遠高於其他品種 (約107~8 copies);紅妃的根部、莖部與葉部分別在接種後7、8與8天被測到,24天後在葉部之病毒量約為104 copies。以PRSV/SMN為接種源時,台大八號根部與莖部也是在接種後第二天即可測出,葉部則是在接種後7天可以測到,24天後在葉部測到的病毒量仍不高 (約103~4 copies);台農二號根部與莖部分別在接種後8與4天被測到,10天後病毒才達葉部, 24天後在葉部之病毒量明顯提升,30天後可達106 copies;紅妃的根部、莖部與葉部分別在接種後8天、8天與4天被測到,24天後在葉部之病毒量約為104 copies。就病毒在植株體內各部位的PRSV定量偵測結果來看,根部的PRSV累積量通常要高於或相似於葉部,莖部病毒量略低於根部但差距並不明顯,由此可見根部是PRSV相當重要的繁殖部位。新育成之耐病品種台大八號接種PRSV/DF時,根部病毒量最高可達106 copies,但轉移至葉部增殖時只能達到約103 copies,與感病的台農二號相比低了約104~5倍,顯示病毒在台大八號的葉部有明顯被壓制,推論可能是其耐病原因之ㄧ;台大八號接種PRSV/SMN時,根部病毒量最高可達107~8 copies,但轉移至葉部增殖時只能達到約103~4 copies,情況與DF類似,但可看出台大八號對SMN的壓制力稍差。此外,比較傳統反轉錄聚合酶連鎖反應 (RT-PCR) 技術與Real-time RT-PCR技術偵測結果,可以發現Real-Time RT-PCR不但可以較早或同時偵測出病毒存在,且提供了相當精準的相對量值,了解寄主體內病毒之增殖動態,為未來研究木瓜輪點病毒及相關研究分析不可或缺的工具之一。zh_TW
dc.description.abstractPapaya ringspot , caused by the Papaya ringspot virus (PRSV), is one of the most important diseases in papaya. PRSV is divided into three major strains distinguished by the symptoms on leaves: severe mottling (SM), deformation (DF), and severe mottling with necrosis (SMN). In this study, three papaya cultivars (lines) were inoculated with PRSV (DF and SMN strain), then the Real-Time RT-PCR assay was used to perform quantitative detection to track the distribution, migration, and propagation of each PRSV in papaya hosts. Three papaya cultivars (lines) were used including Tainung No.2 (TN2), Red Lady (RL), and National Taiwan University Hybrid No.8. (NTU8). After inoculation with the DF strain of PRSV (PRSV/DF), viruses could be detected in roots, stems and leaves of NTU8 within 2 days, which is earliest among the three cultivars. Viruses were found in NTU8 leaves within 4 days post-inoculation, indicating that the viruses moved very fast in NTU8, although they did not replicate well and remained at low quantity (103 copies). PRSV/DF was monitored in roots, stems and leaves of TN2 4, 8 and 10 days after inoculation respectively; the virus quantities in leaves of TN2 reached to a peak (107~8 copies) 24 days later, which is the highest compared to RL and NTU8 . For the RL cultivar, viruses were detected in roots, stems and leaves at 7, 8, and 8 days post-inoculation respectively, and the peak quantity in leaves 24 days after inoculation reached 104 copies. In the inoculation tests with the SMN strain of PRSV (PRSV/SMN), NTU8 exhibited detectable virus levels in roots, stems and leaves 2, 2 and 7 days after inoculation respectively, and the virus quantity remained (103~4 copies) at 24 days later. PRSV/SMN in TN2 was detected in roots and stem after 8 and 4 days respectively, and reached into leaves 10 days after inoculation, where quantity could reach as high as 106 copies after 30 days. The roots, stems and leaves of RL showed detectable virus at 8, 8 and 4 days after inoculation, with quantities at about 104 copies in the leaves 24 days later. In roots usually accumulate more or the same amounts than in leaves, and stems gave rise to slightly lower quantity of viruses than in roots as a results of comparative quantitative detection among roots, stems and leaves no matter what cultivar of papaya was used. It seems that roots are very important for PRSV to propagate. The new bred papaya cultivar tolerant to PRSV, NTU8, constantly showed a good replication of PRSV/DF at 106 copies in roots, but a lower amount of 103 copies in the leaves. TN2, the susceptible cultivar to PRSV, showed more viruses in the leaves approximately 104~5 times than NTU8. This is probably one of the factors resulting in the tolerance of NTU8. When NTU8 was inoculated with PRSV/SMN, it had the virus quantity of 107~8 copies in roots, but only 103~4 copies in leaves; which is similar to the case of PRSV/DF. However, NTU8 seems to have slightly lower tolerance to PRSV/SMN. In this thesis, in addition, the Real-Time RT-PCR method performed its better sensitivity and could detect these viruses at the same time or earlier than the conventional RT-PCR method. Furthermore, this method also provides a precise relative quantification for PRSV and it is helpful to understand how the virus propagates in the host, and will be valuable for future ecological study and control of PRSV.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:35:53Z (GMT). No. of bitstreams: 1
ntu-98-R96633001-1.pdf: 2074459 bytes, checksum: 1d75c332a5b6a2debaf383a045df3eb0 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
誌謝…………………………………………………………………………………… ii
中文摘要……………………………………………………………………………......iii
英文摘要…………………………………………………………………………….....iv
目錄…………………………………………………………………………………...... v
表目錄………………………………………………………………………………....vii
圖目錄………………………………………………………………………………...viiii
壹 前言………………………………………………………………………………….1
貳 前人研究………………………………………………………………………….....4
一 木瓜輪點病毒發生與危害………………………………………………………...4
二 木瓜輪點病毒分類與細胞病理學研究……………………………………….4
三 木瓜輪點病毒之傳播方式 ……………………………………………………...6
四 木瓜輪點病毒病徵………………………………………………………………...7
五 台灣木瓜輪點病毒之系統………………………………………………………...7
六 木瓜輪點病毒之偵測方式………………………………………………………...8
七、木瓜輪點病毒防治方法…………………………………………………………...9
八 即時定量聚合酶連鎖反應……………………………………………………….10
参 材料方法…………………………………………………………………………...12
一 試驗植物之準備…………………………………………………………………...12
二 木瓜輪點病毒系統來源與保存…………………………………………………...12
三木瓜輪點病毒核酸抽取法………………………………………………………….13
四One-Step RT-PCR…………………………………………………………………..13
五. RT- PCR產物電泳膠體分析…………………………………………………..14
六 Real-time RT-PCR 定量偵測技術之研發………………………………………..14
1. Common PRSV TaqMan primer/probe設計……………………………………..14
2. RNA反轉錄 ……………………………………………………………………15
3. 絕對定量的標準品與標準曲線(standard curve)之建立…………………….......15
4. Real-time RT-PCR / Taqman primer/probe 操作………………………………..16
七 木瓜輪點病毒於不同品種(系)木瓜上之接種實驗………………………….........16
肆 結果………………………………………………………………………………...18
一、不同木瓜輪點病毒系統接種在不同品種木瓜上之病徵表現…………………..18
二、木瓜輪點病毒在寄主植物體內之定量偵測……………………………………..18
(一)、一般RT-PCR法之病毒偵測結果………………………………………………18
(二)、Real-Time RT-PCR法之病毒偵測結果………………………………………..19
(三) PRSV在木瓜寄主體內根、莖、葉分布之定量比較……………………………22
伍 討論……………………………………………………………………………….24
陸、參考文獻………………………………………………………………………….28
柒、表…………………………………………………………………………………37
捌、 圖.…………………………………………………………………………………45
dc.language.isozh-TW
dc.subject連鎖反應zh_TW
dc.subject木瓜輪點病毒zh_TW
dc.subject即時定量反轉錄聚合&#37238zh_TW
dc.subject木瓜zh_TW
dc.subjectpapayaen
dc.subjectPapaya ringspot virusen
dc.subjectReal-Time RT-PCRen
dc.title應用Real-Time RT-PCR技術研究木瓜輪點病毒在木瓜
寄主體內的分佈、移動以及增殖動態
zh_TW
dc.titleStudy of distribution, migration and propagation of
Papaya Ringspot Virus in papaya hosts with Real-Time
RT-PCR techniques
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈湯龍(Tang-Long Shen),林宗賢(Tzong-Shyan Lin),張龍生(Long-Chan Chang)
dc.subject.keyword木瓜,木瓜輪點病毒,即時定量反轉錄聚合&#37238,連鎖反應,zh_TW
dc.subject.keywordpapaya,,Papaya ringspot virus,Real-Time RT-PCR,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2009-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved