請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43999完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳世銘 | |
| dc.contributor.author | Wei-Tin Tu | en |
| dc.contributor.author | 杜威霆 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:35:43Z | - |
| dc.date.available | 2014-08-14 | |
| dc.date.copyright | 2009-08-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-13 | |
| dc.identifier.citation | 伍志翔、陳世銘、楊宜璋、陳加增、葉冠宏。2005。近紅外光光譜儀標準化模式建立之研究。出自“ 2005農機與生機論文發表會論文摘要集 ”,333-334。台北:中華農業機械學會。
伍志翔、陳世銘、楊宜璋、陳加增。2006。應用支援向量迴歸建立近紅外光光譜標準化模式。出自”2006年生物機電工程研討會論文集”,373-378。台北:台灣生物機電學會。 伍志翔。2007。近紅外光光譜標準化模式之研究。碩士論文。台北:台灣大學生物產業機電工程學研究所。 吳志宏、陳世銘、楊宜璋。2007。以支援向量法進行不同儀器間之標準化研究。出自“ 2007農機與生機論文發表會論文摘要集 ”,97-98。台北:中華農業機械學會。 吳志宏。2008。以支援向量法進行不同儀器間近紅外光光譜標準化之研究。碩士論文。台北:台灣大學生物產業機電工程學研究所。 陳加增。2001。近紅外光應用於水果糖酸度線上檢測之研究。碩士論文。台北:台灣大學生物產業機電工程學系研究所。 陳世銘、江昭皚、謝廣文、邱奕志、謝俊夫、蔡兆胤、洪辰雄、李經緯、陳加增、楊宜璋、蔡志成、黃政偉、莊永坤、楊昇穎、陳冠宏、陳志杰、徐子建、郭景成。2006。水果品質非破壞性線上檢測系統之開發。台灣農業機械21(1):11-12。 陳世銘、蔡兆胤、盛中德、邱奕志、謝廣文、江昭皚、洪辰雄、陳加增、楊宜璋、莊永坤。2009。近紅外光之線上檢測系統。經濟部智慧財產局:新型專利第 M 359692 號。 歐陽孚、陳世銘、伍志翔、楊宜璋、陳加增。2006。近紅外光光譜標準化模式校正樣本篩選法則之研究。出自”2006年生物機電工程研討會論文集”,898-902。台北:台灣生物機電學會。 Alamar, M. C., E. Bobelyn, and J. Lammertyn. 2007. Calibration transfer between IR diode array and FT-NIR spectrophotometers for measuring the soluble solids contents of apple. Postharvest Biology and Technology 45(1): 38-45. Bouveresse, E. and D. L. Massart. 1996. Standardisation of near-infrared spectrometric instruments: A review. Appl. Spectrosc. 11(1): 3-15. Bouveresse, E. and D. L. Massart. 1996. Standardization of Near-infrared Spectrometric Instruments. Anal. Chem. 68(6): 982-990. Bouveresse, E. and D. L. Massart.1996. Improvement of the piecewise direct standardisation procedure for the transfer of NIR spectra for multivariate calibration. Chemom. Intell. Lab. Sys. 32(2): 201–213. Bouveresse, E., C. Casolino, and C. de la Pezuela. 1998. Application of standardisation methods to correct the spectral differences induced by a fibre optic probe used for the near-infrared analysis of pharmaceutical tablets. J. Phar. Biomed. Anal. 18(1-2):35-42. Cherkassky, V. and Y. Ma. 2004. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks. 17(1): 13-126. Duponchel, L., C. Ruckebusch, J.P. Huvenne, and P. Legrand. 1999. Standardisation of near infrared spectrometers using artificial neural networks. J. Near Infrared Spectrosc. 7(3): 551–556. Fearn, T. 2001. Standardisation and calibration transfer for near infrared instruments: a review. J. Near Infrared Spectrosc. 9(4): 229-244. Fernández-Cabanás V.M., A. Garrido-Varo, J. G. Olmo, E. D. Pedro, and P. Dardenne. 2007. Optimisation of the spectral pre-treatments used for Iberian pig fat NIR calibrations. Chemom. Intell. Lab. Sys. 87(1): 104-112 Feudale, R. N., N. A. Woody, H. Tan, A. J. Myles, S. D. Brown, and J. Ferré. 2002. Transfer of multivariate calibration models: a review. Chemom. Intell. Lab. Sys. 64(2): 181–192. Forina, M., G. Drava, C. Armanino, R. Boggia, S. Lanteri, R. Leardi, P. Corti, P. Conti, R. Giangiacomo, C. Galliena, R. Bigoni, I. Quartari, C. Serra, D. Ferri, O. Leoni, and L. Lazzeri. 1995. Transfer of calibration function in near-infrared spectroscopy. Chemom. Intell. Lab. Sys. 27(2): 189–203. Forina, M., S. Lanteri, and M. Casale. 2007. Multivariate calibration. Journal of Chromatography A 1158(1-2): 61-93. Helland, Inge S., Tormod Næs and Tomas Isaksson. 1995. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data. Chemom. Intell. Sys. 29(2): 233–241. Kennard, R. W. and L. A. Stone. 1969. Computer Aided Design of Experiments. Technometrics. 11(1): 137-148. Kramer, K. E., R. E. Morris, and S. L. Rose-Pehrsson. 2008. Comparison of two multiplicative signal correction strategies for calibration transfer without standards. Chemom. Intell. Sys. 92(1) : 33-43. Leion, H., S. Folestad, M. Josefson, and A. Sparén. 2005. Evaluation of basic algorithms for transferring quantitative multivariate calibrations between scanning grating and FT NIR spectrometers. J. Phar. Biomed. Anal. 37(1):47-95. Sahni, N. S., T. Isaksson, and T. Naes. 2005. Comparison of Methods for Transfer of Calibration Models in Near-Infared Spectroscopy: A Case Study Based on Correcting Path Length Differences Using Fiber-Optic Transmittance Probes in In-Line Near-Infrared Spectroscopy. Appl. Spectrosc. 59(4): 487-495. Smola, A. J. and B. Schölkopf. 2004. A tutorial on support vector regression. Statistics and Computing. 14(3): 199-222. Sum, S. T. and S. D. Brown. 1998. Standardization of Fiber-Optic Probes for Near-Infrared Multivariate Calibrations. Appl. Spectrosc. 52(6): 868-877. Swierenga, H., F. Wülfert, O. E. de Noord, A. P. de Weijer, A. K. Smilde and L. M. C. Buydens. 2000. Development of robust calibration models in near infra-red spectrometric applications. Anal. Chim. Acta. 411(1-2): 121–135. Üstün, B., W. J. Melssen, M. Oudenhuijzen, and L. M. C. Buydens. 2005. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Anal. Chim. Acta. 544(1-2): 292-305. Walczak, B., E. Bouveresse, and D. L. Massart. 1997. Standardization of near-infrared spectra in the wavelet domain. Chemom. Intell. Syst. 36(1): 41–51. Wang, Y., D. J. Veltkamp, and B. R. Kowalski. 1991. Multivariate Instrument Standardization. Anal. Chem. 63: 2750–2756. Wang, Y., M. J. Lysaght, and B. R. Kowalski. 1992. Improvement of Multivariate Calibration through Instrument Standardization. Anal. Chem. 64: 562–564. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43999 | - |
| dc.description.abstract | 近年來,近紅外光(Near Infrared, NIR)光譜分析技術已經廣泛地應用於不同領域之中,然而每台分光光度計間儀器的構造差異卻在使用上造成很大之限制,即使進行相同樣本之量測,獲得之光譜響應也不盡相同,造成由主儀器(Master)所建立之光譜資料庫和預測模式,並無法直接應用於其他副儀器(Slave)作預測。為了解決此問題,光譜標準化之技術便因應而生。
現今之光譜標準化方法大略可分為以下幾種策略,包含光譜前處理、模式調整、光譜映射、以及強健檢量線之建立。有鑑於生物材料成份之複雜性,本研究將光譜前處理以及光譜映射兩種標準化策略結合,實際應用於水果糖度檢測之標準化。在此使用了標準常態變數(Standard Normal Variate, SNV)、多元性散射修正(Multiplicative Scatter Correction, MSC)以及一次微分三種光譜前處理方法,搭配片段直接標準化(Piecewise Direct Standardization, PDS)以及支援向量標準化(Support Vector Standardization, SVS)兩種線性和非線性之光譜映射方法進行水果光譜之標準化,並使用修正型部份最小平方迴歸(Modified Partial Least Square Regression, MPLSR)進行水果糖度檢量線之建立,探討不同型號、配件儀器標準化後的光譜預測能力。 在兩部相同型號之FOSS NIRSystem 6500,分別搭配快速成份分析儀(Rapid Content Analyzer, RCA)以及光纖(Fiber Optic Probe, FOP)兩種不同配件的儀器光譜標準化方面,由一次微分搭配PDS有著最佳之標準化結果,相對於主儀器預測組之最佳SEP為1.05 °Brix、RSEP為7.33 %而言,副儀器光譜標準化前之SEP為3.01 °Brix、RSEP為21.11 %,標準化後預測能力提升至SEP為1.27 °Brix、RSEP為9.07 %;而FOSS NIRSystem 6500搭配RCA與FOSS NIRSystem On-line 6500,兩部相同光感測器不同構造之儀器方面,同樣由一次微分搭配PDS有著最佳之標準化能力,相對於主儀器預測組之SEP為0.67 °Brix、RSEP為4.91 %而言,光譜標準化前後副儀器之SEP原先的15.95 °Brix下降至0.95 °Brix,而RSEP也從112.94 %下降至6.73 %,已有著和主儀器相近之預測能力,並且可以直接使用主儀器之資料庫進行水果糖度之預測。而在FOSS NIRSystem 6500搭配RCA與水果品質非破壞性線上檢測系統,兩部構造完全相異儀器之標準化中,由SVS有著最佳之標準化能力,能將標準化後之SEP從6.92 °Brix下降至1.38 °Brix,RSEP從48.52 %下降至9.47 %。 | zh_TW |
| dc.description.abstract | Near-infrared (NIR) has been widely used in many fields; however, there are still some constraints in application due to the constructional differences among spectrometers. Even if the measurements conducted on the same sample, the spectral responses of instruments are different. Therefore, the databases and calibration models built on Master instrument can’t be used for the spectra measured by Slave instrument. In order to solve this problem, the method of Spectral Standardization has been developed.
In this research, Spectral Standardization Models were practically applied to the Sugar Content Inspection for Fruits. In this study, Standard Normal Variate (SNV)、Multiplicative Scatter Correction (MSC) and 1st Derivatives Spectral Pretreatment method were combined with the Spectral Mapping methods, such as Piecewise Direct Standardization, (PDS) and Support Vector Standardization (SVS) , in order to find the best Standardization strategy among different instruments. The Standardization ability will be evaluated by the Spectral prediction ability after standardization. The best result for same type spectrometer but different associated apparatus was using PDS with 1st Derivatives. After Standardization, the SEP of slave instrument could be reduced from 3.01 °Brix to 1.27 °Brix, the RSEP also reduced from 21.11 % to 9.07 %. The best result for same type detectors but different optical design was using 1st Derivatives and PDS together, the SEP and RSEP of slave instrument were 15.95 °Brix and 112.94 % before Spectral Standardization; the SEP and RSEP were 0.95 °Brix and 6.73 % after Spectral Standardization, while the SEP and RSEP of master instrument were 0.67 °Brix and 4.91%. The Slave spectra after Standardization almost have the same prediction ability of sugar content as Master spectra, and can be directly applied to the databases built by master instrument. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:35:43Z (GMT). No. of bitstreams: 1 ntu-98-R96631014-1.pdf: 3375722 bytes, checksum: e803cfe36a28c47a8db45ecfc8c124a8 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目 錄
致謝 i 摘要 ii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 表目錄 ix 第一章 前言 1 1.1 前言 1 1.2 研究目的 3 第二章 文獻探討 4 2.1 光譜差異之成因 4 2.2 光譜標準化 6 2.2.1 標準化樣本 7 2.2.2 標準化樣本選取方法 7 2.3 光譜前處理 12 2.3.1 比例縮放 12 2.3.2 多元性散射修正 14 2.3.3 有限脈波響應 17 2.3.4 微分 18 2.3.5 正交訊號修正 22 2.4 模式調整 22 2.5 光譜映射 25 2.5.1 直接標準化 26 2.5.2 片段直接標準化 26 2.5.3 類神經網路 29 2.5.4 小波轉換 30 2.5.5 支援向量標準化 31 2.6 建立強健之檢量線 34 第三章 材料與方法 36 3.1 實驗儀器 36 3.2 分析軟體 40 3.3 實驗樣本 41 3.4 實驗流程 42 3.5 光譜標準化策略 44 3.5.1 光譜前處理運算 45 3.5.2 標準化樣本的選取 45 3.5.3 光譜映射轉換參數之計算 46 3.5.4 光譜標準化能力之比較 48 第四章 結果與討論 52 4.1 芒果樣本之標準化分析結果 52 4.1.1 相同型號儀器不同配件測量光譜之差異 53 4.1.2 光譜映射結果 56 4.1.3 標準化後光譜預測結果 64 4.2 印度棗樣本之標準化分析結果 72 4.2.1 樣本光譜以及不同儀器上之差異 74 4.2.2 光譜前處理結果 76 4.2.3 光譜映射結果 80 4.2.4 標準化後光譜預測結果 82 第五章 結論與建議 90 5.1 結論 90 5.2 建議 91 參考文獻 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 支援向量標準化 | zh_TW |
| dc.subject | 近紅外光 | zh_TW |
| dc.subject | 光譜標準化 | zh_TW |
| dc.subject | 前處理 | zh_TW |
| dc.subject | 片段直接標準化 | zh_TW |
| dc.subject | Near-infrared | en |
| dc.subject | Support Vector Standardization | en |
| dc.subject | Pretreatment | en |
| dc.subject | Piecewise Direct Standardization | en |
| dc.subject | Spectral Standardization | en |
| dc.title | 光譜標準化模式應用於水果糖度檢測之研究 | zh_TW |
| dc.title | Study on Sugar Content Evaluation of Fruits Using Spectral Standardization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 艾群,盛中德,林連雄,周呈霙 | |
| dc.subject.keyword | 近紅外光,光譜標準化,前處理,片段直接標準化,支援向量標準化, | zh_TW |
| dc.subject.keyword | Near-infrared,Spectral Standardization,Piecewise Direct Standardization,Pretreatment,Support Vector Standardization, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
