請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4398完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳克強 | |
| dc.contributor.author | Pei-Ming Yeh | en |
| dc.contributor.author | 葉培民 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:42:03Z | - |
| dc.date.available | 2017-02-16 | |
| dc.date.available | 2021-05-14T17:42:03Z | - |
| dc.date.copyright | 2016-02-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-21 | |
| dc.identifier.citation | Ahringer, J. (2000). NuRD and SIN3: histone deacetylase complexes in development. Trends Genet. 16:351-356.
Alinsug, M.V., Chen, F.F., Luo, M., Tai, R., Jiang, L., and Wu, K. (2012). Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light.PLoS One 7:e30846-e30846. Baba, A., Ohtake, F., Okuno, Y., Yokota, K., Okada, M., Imai, Y., Ni, M., Meyer, C.A., Igarashi, K., and Kanno, J. (2011). PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat. Cell Biol. 13:668-675. Barbero, J.L. (2009). Cohesins: chromatin architects in chromosome segregation, control of gene expression and much more. Cell. Mol. Life Sci. 66:2025-2035. Bate, N.J., and Rothstein, S.J. (1998). C6‐volatiles derived from the lipoxygenase pathway induce a subset of defense‐related genes. Plant J. 16:561-569. Belkhadir, Y., and Jaillais, Y. (2015). The molecular circuitry of brassinosteroid signaling. New Phytol.206:522-540. Chen, L.-T., Luo, M., Wang, Y.-Y., and Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J. Exp. Bot. 61:3345-3353. Chini, C.C., Escande, C., Nin, V., and Chini, E.N. (2010). HDAC3 is negatively regulated by the nuclear protein DBC1. J. Biol. Chem. 285:40830-40837. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.-h., Hong, X., Agarwal, M., and Zhu, J.-K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17:1043-1054. Choudhary, S.P., Yu, J.-Q., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.-S.P. (2012). Benefits of brassinosteroid crosstalk. Trends Plant Sci. 17:594-605. Fuchs, J., Demidov, D., Houben, A., and Schubert, I. (2006). Chromosomal histone modification patterns–from conservation to diversity. Trends Plant Sci. 11:199-208. Guan, Q., Wen, C., Zeng, H., and Zhu, J. (2013). A KH domain-containing putative RNA-binding protein is critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Mol. Plant. 6:386-395. Guo, H., Li, L., Aluru, M., Aluru, S., and Yin, Y. (2013). Mechanisms and networks for brassinosteroid regulated gene expression. Curr. Opin. Plant Biol. 16:545-553. Han, Z., Guo, L., Wang, H., Shen, Y., Deng, X.W., and Chai, J. (2006). Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol. Cell 22:137-144. Henikoff, S. (2005). Histone modifications: combinatorial complexity or cumulative simplicity? Proc. Natl. Acad. Sci. U. S. A. 102:5308-5309. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444:323-329. Joshi, P., Guise, A.J., Luo, Y., Yu, F., Nesvizhskii, A.I., Cristea, I.M. (2013). The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol. 9:672. Kim, J.-E., Chen, J., and Lou, Z. (2008). DBC1 is a negative regulator of SIRT1. Nature 451:583-586. Li, J. (2005). Brassinosteroid signaling: from receptor kinases to transcription factors. Curr. Opin. Plant Biol. 8:526-531. Li, J., and Jin, H. (2007). Regulation of brassinosteroid signaling. Trends Plant Sci. 12:37-41. Li, X., Clarke, J.D., Zhang, Y., and Dong, X. (2001). Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol. Plant-Microbe Interact. 14:1131-1139. Liu, X., Chen, C.-Y., Wang, K.-C., Luo, M., Tai, R., Yuan, L., Zhao, M., Yang, S., Tian, G., and Cui, Y. (2013). PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25:1258-1273. Luo, M., Wang, Y.-Y., Liu, X., Yang, S., Lu, Q., Cui, Y., and Wu, K. (2012). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J. Exp. Bot. 63:3297-3306. Müssig, C., Biesgen, C., Lisso, J., Uwer, U., Weiler, E.W., and Altmann, T. (2000). A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis. J. Plant Physiol.157:143-152. Mitchell, J., Mandava, N., Worley, J., Plimmer, J., and Smith, M. (1970). Brassins-a new family of plant hormones from rape pollen. Nature 225:1065-1066. Monaghan, J., Xu, F., Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y., and Li, X. (2009). Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog. 5:e1000526-e1000526. Oh, E., Zhu, J.-Y., Ryu, H., Hwang, I., and Wang, Z.-Y. (2014). TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nat. Commun. 5:4140. Palma, K., Zhao, Q., Cheng, Y.T., Bi, D., Monaghan, J., Cheng, W., Zhang, Y., and Li, X. (2007). Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev. 21:1484-1493. Pandey, R., MuÈller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30:5036-5055. Peng, Z., Han, C., Yuan, L., Zhang, K., Huang, H., and Ren, C. (2011). Brassinosteroid enhances jasmonate‐induced anthocyanin accumulation in Arabidopsis seedlings. Journal of integrative plant biology 53:632-640. Schaller, F., Biesgen, C., Müssig, C., Altmann, T., and Weiler, E.W. (2000). 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979-984. Shahbazian, M.D., and Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76:75-100. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58:221-227. Song, C.-P., and Galbraith, D.W. (2006). AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol.Biol. 60:241-257. Vermeulen, M., Eberl, H.C., Matarese, F., Marks, H., Denissov, S., Butter, F., Lee, K.K., Olsen, J.V., Hyman, A.A., and Stunnenberg, H.G. (2010). Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142:967-980. Wang, L., Kim, J., and Somers, D.E. (2013). Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc. Natl. Acad. Sci. U. S. A. 110:761-766. Woloshen, V., Huang, S., and Li, X. (2010). RNA-Binding Proteins in Plant Immunity. J. Pathog. 2011:278697-278697. Xie, Z., Allen, E., Wilken, A., and Carrington, J.C. (2005). DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. of the United States of America 102:12984-12989. Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., and Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249-259. Yu, C.-W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 156:173-184. Zhang, Y., Goritschnig, S., Dong, X., and Li, X. (2003). A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636-2646. Zhao, W., Kruse, J.-P., Tang, Y., Jung, S.Y., Qin, J., and Gu, W. (2008). Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451:587-590. Zhu, J.-K. (2001). Plant salt tolerance. Trends Plant Sci. 6:66-71. Zimmerli, L., Métraux, J.-P., and Mauch-Mani, B. (2001). β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126:517-523. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4398 | - |
| dc.description.abstract | 組蛋白去乙醯酶(HDACs或者HDAs)主要作用於組蛋白N端離氨酸的去乙醯化作用,而此修飾在植物生長發育過程中扮演重要角色。組蛋白去乙醯酶HDA15為RPD3/HDA1 superfamily的成員,目前已知的功能為與PIF3共同调控葉綠素的生合成與光合作用。我們使用LC-MS/MS找到了許多可能與HDA15有交互作用的蛋白,並進一步以雙螢光分子雜交技術(BiFC)來確認這些蛋白與HDA15的交互作用。其中,我們發現HDA15與會參與植物抗病反應的MOS4 Associated Complex有交互作用。HDA15 突變株接種Pseudomonas syringae pv. tomato DC3000 3天後表現出對病原菌敏感,而此一病徵與mos4-1 的表型相似,說明HDA15可能參與在植物抗病反應中調控植物的免疫反應。
BIM1,BIM2和BIM3為bHLH的成員,會與BES1共同作用在E-box的啟動子區域上去調控Brassinosteroid反應基因。依據先前文獻,bim1/bim2/bim3三重突變會造成BR調控基因的反應下降。在本研究中,我們發現BIM2會與HDA15以及HDA6有交互作用。此外,HDA6與突變株bim1/bim2/bim3三重突變株在高鹽逆境下會出現花青素累積量下降,以及在種子萌發時期對高鹽逆境敏感的現象。 | zh_TW |
| dc.description.abstract | Histone deacetylases (HDACs or HDAs) are responsible for the deacetylation of lysine residues on the N-terminal tail of core histones and play an important role in transcriptional regulation, cell cycle progression and developmental events. HISTONE DEACETYLASES 15 (HDA15), one of the RPD3/HDA1 superfamily members, is known to regulate chlorophyll biosynthesis and photosynthesis by interacting with PHYTOCHROME INTERACTING FACTOR3 (PIF3). We found that many proteins can interact with HDA15 by LC-MS/MS analysis. The interaction of HDA15 with these identified proteins was further confirmed by bimolecular fluorescence complementation assays. In particular, we found that HDA15 can interact with the MOS4 associated complex involved in plant immune responses. Similar to mos4-1, hda15 mutants were hypersensitive to Pseudomonas syringae pv. tomato DC3000 after three days inoculation, supporting that HDA15 may interact with the MOS4 associated complex to regulate plant immunity.
BES1-INTERACTING MYC-LIKE PROTEINS 1 (BIM1), BIM2 and BIM3 belong to the bHLH protein family. BIMs interact with BR-INSENSITIVE-EMS-SUPPRESSOR1 (BES1) to synergistically bind to the E-boxes that are present in the promoter regions of a multitude of genes such as Brassinosteroid (BR) responding genes. It was reported that the simultaneous elimination of all three BIM proteins results in reduced BR-mediated responses. In this study, we found that BIM2 can interact with HDA15 and HDA6, and bim1/bim2/bim3 and axe1-5 accumulate less anthocyanin under high salt conditions and are hypersensitive to salt stress in the seed germination stage. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:42:03Z (GMT). No. of bitstreams: 1 ntu-104-R02b42017-1.pdf: 3779762 bytes, checksum: 1a9ff969f2072cfdf79731ddb3bb02e6 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Introduction 1 Histone deacetylases 1 Salt stress response in plants 3 BES1-INTERACTING MYC-LIKE (BIMs) proteins 4 Plant Immunity 5 Materials and Methods 8 Plant Materials 8 RNA isolation 9 RT-PCR analysis 10 Quantitative real-time PCR (qPCR) 11 Seed germination in Petri dishes 12 Measurement of germination rates 12 Bimolecular Fluorescence Complementation (BiFC) assay 12 Anthocyanin accumulation assays (Bate and Rothstein, 1998) 15 Pathogen inoculation (Zimmerli et al., 2001) 16 Results 17 Identification of HDA15 interaction proteins 17 The hda15 mutant is hyposensitive to salt stress in seed germination 19 The hda15 mutant is hypersensitive to Pst DC3000 20 bim1/bim2/bim3 triple mutant is hypersensitive to salt stress during seed germination 20 bim1/bim2/bim3 triple mutant accumulates less anthocyanin 21 Discussion 23 Figures 27 Tables 44 Table 1. Chromatin-related proteins interacting with HDA15 44 Table 2. Transcription factors interacting with HDA15 45 Table 3. T-DNA insertion mutants used for this study 47 Table 4. Primers used for T-DNA line screening 48 Table 5. Primers used for plasmid constructions 49 Supplementary Tables 50 Supplementary Table 1. Additional proteins interacting with HDA15 50 References 56 | |
| dc.language.iso | en | |
| dc.subject | 抗病反應 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 組蛋白去乙醯?HDA15 | zh_TW |
| dc.subject | MOS4複合體 | zh_TW |
| dc.subject | plant immunity | en |
| dc.subject | Arabidopsis | en |
| dc.subject | MOS4 associated complex | en |
| dc.subject | histone deacetylases 15 | en |
| dc.title | HDA15互作蛋白之鑑定與分析 | zh_TW |
| dc.title | Identification and characterization of the interaction proteins of HISTONE DEACETYLASE 15 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林讚標,鄭秋萍,洪傳揚,楊健志 | |
| dc.subject.keyword | 阿拉伯芥,組蛋白去乙醯?HDA15,MOS4複合體,抗病反應, | zh_TW |
| dc.subject.keyword | Arabidopsis,histone deacetylases 15,MOS4 associated complex,plant immunity, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-01-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 3.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
