Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43989
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建成(Jian-Cheng Lee),陳于高(Yue-Gau Chen)
dc.contributor.authorChia-Yu Chenen
dc.contributor.author陳嘉俞zh_TW
dc.date.accessioned2021-06-15T02:35:20Z-
dc.date.available2009-08-14
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-13
dc.identifier.citationAngelier, J. (1986) Geodynamics of the Eurasia-Philippine Sea plate boundary. Spec. Issue. Tectonophysics, 125, IX-X.
Angelier, J., Chang, T. Y., Hu, J. C., Chang, C. P., Siame, L., Lee, J. C., Deffontaines , B., Chu, H. T., and Lu, C. Y. (2009) Does extrusion occurs at both tips of the Taiwan collision beltNULL Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions, Tectonophysics, 466, 356-376.
Bonilla, M. G. (1975) A review of recently active faults in Taiwan. Open File Report 75-41, U.S. Geol. Surv., 58p.
Burbank, D. W., and Anderson R. S. (2001) Tectonic Geomorphology, 5th ed. Wiley-Blackwell, USA, 274p.
Chang, C. P., Chen, K. S., Chung, L. H., Yen, J. Y., and Shih, T. S. (2008) Active fault propagation in metropolitan Hualien of eastern Taiwan: Observed by radar interferometry and field investigation. IEEE Transactions, (revised).
Chen, Y. G., Lai, K. Y., Lee, Y. H., Suppe, J., Chen, W. S., Lin, Y. N., Wang, Y., Hung, J. H., and Kuo, Y. T. (2007) Coseismic fold scarps and their kinematic behavor in the 1999 Chi-Chi earthquake Taiwan. J. Geophys. Res., 112, B03S02, doi: 10.1029/2006JB004388.
Chi, W. R., Huang H. M. and Wu J. C. (1983) Ages of the Milun and Pinanshan conglomerates and their bearings on the Quaternary movement of eastern Taiwan. Proc. Geol. Soc. China, 26, 67-75.
Dach, R., Hugentobler, U., Fridez, P., Meindl, M. (2007) Bernese GPS Software Version 5.0: Astronomical Institute, University of Bern.
 
Davis, J. L., Prescott, W. H., Svarc, J. L., and Wendt, K. J. (1989) Assessment of Global Positioning System measurements for studies of crustal deformation. J. Geophys. Res., 94(B10), 13635-13650.
GARMIN (2000) GPS Guide: GARMIN Corporation.
Hanssen, R. F. (2001) Radar interferometry: Data Interpretation and Error Analysis. Kluwer Academic, Dordrecht.
Hsu, T. L. (1962) Recent faulting in the Longitudinal Valley of eastern Taiwan. Mem. Geol. Soc. China, 1, 95-102.
Hu, J. C., Yu, S. B., Chu, H. T., and Angelier, J., 2002. Transtion tectonics of northern Taiwan induced by convergence and trench retreat, in Byrne, T.B., and Liu, C.-S., eds., Geoloy and Geophysics of an Arc-Continent collision, Taiwan. Geol. Soc. Am. Special Paper, 358, 149-162.
Konishi, K., Omura, A., and Kimura, T. (1968) 234U-230Th dating of some late Quaternary coralline limestones from southern Taiwan (Formosa). Geol. Palaeontol. SE Asia, 5, 211-224.
Kostrov, B. V. (1974) Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Earth Phys., 1, 23-40.
Lacombe, O., Mouthereau, F., Angelier, J. , and Deffontaines, B. (2001) Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics, 333(1-2), 323-345.
Lillesand, T. M., Kiefer, R. W., and Chipman, J. W. (2004) Remote Sensing and Image Interpretation, 5th ed. John Wiley & Sons, Inc., New York.
Lin, C. C. (1969) Holocene geology of Taiwan. Acta. Geology Taiwan, 13, 83-126.
Lu, C. Y., Angelier, J., Chu, H. T. and Lee, J. C. (1995) Contractionl, transcurrent, rotational and extensional tectonics: Examples from Northern Taiwan. Tectonophysics, 256(1-3), 129-146.
Matsu'ura, M., Jackson, D. D., and Cheng, A. (1986) Dislocation model for aseismic crustal deformation at Hollister, California. J. Geophys. Res., 91, 12661-12674.
Peng, T.H., Li, Y.H., and Wu, F.T. (1977) Tectonic uplift rates of the Taiwan island since the early Holocene. Mem. Geol. Soc. China, 2, 57-69.
Prescott, W. H., Savage, J. C., and Kinoshita, W. T. (1979) Strain accumulation rates in the western United-States between 1970 and 1978. J. Geophys. Res., 84(10), 5423-5435.
Rau, R. J., Ching, K. E., Hu, J. C., and Lee, J. C. (2008) Crustal deformation and block kinematics in transition from arc-continent collision to subduction: GPS measurements in northern Taiwan, 1995-2005. J. Geophys. Res., 113, B09404, doi: 10.1029/2007JB005414.
Segall, P., and Davis, J. L. (1997) GPS Applications for geodynamics and earthquake studies. Annu. Rev. Earth Planet. Sci., 25, 301-336.
Shen, Z. K., Jackson, D. D., and Ge, B. X. (1996) Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J. Geophys. Res., 101(B12), 27957-27980.
Shyu, J. B. H., K. Sieh, Chen,Y.G., Liu C.S. (2005) Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Res., 110, B08402, doi: 10.1029/2004JB003251.
Suppe, J. (1983) Geometry and kinematics of fault-bend folding. Am. J. Sci., 283, 684-721.
Tapponnier, R., Peltzer, G., Le Dain, A. Y., Armijo, R., Cobbold, P. (1982) Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10, 611-616.
Thatcher, W. (2003) GPS constraints on the kinematics of continental deformation. Int. Geol. Rev., 45(3), 191-212.
The Research Group for Active Faults of Japan (1992) Maps of Active Faults in Japan with an Explanatory Text. University of Tokyo Press.
Ward, S. N. (1994) A multidisciplinary approach to seismic hazard in southern California. Bull. Seismol. Soc. Am., 84(5), 1293-1309.
Ward, S. N. (1998) On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: The United States. Geophys. J. Int., 134(1), 172-186.
Wu, Y. M., Chang, C. H. , Zhao, L., Teng, T. L., and Nakamura, M. (2008) A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bull. Seismol. Soc. Am., 98, 1471-1481.
Yamaguchi, M., and Ota, Y. (2004) Tectonic interpretations of Holocene marine terraces, east coast of Coastal Range, Taiwan. Quatern. Int., 115-116, 71-81.
Yu, S. B., Jackson, D. D., Yu, G. K., Liu, C. C. (1990) Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan. Tectonophysics, 183, 97-109.
Yu, S. B., Chen, H. Y. and Kuo, L.C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
Yu, S. B., and Kuo, L.C. (2001) Present-day crustal motion along the Longitudinal Valley fault, eastern Taiwan. Tectonophysics, 333, 199-217.
Zebker, H. A., Rosen, P. A., and Hensley, S. (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res., 102(B4), 7547-7563.
石再添、張瑞津(1982)活斷層研究的簡介。國立台灣師範大學地理教育,8,11-18。
石再添、張瑞津、黃朝恩、石慶得、楊貴三、孫林耀明(1983)臺灣北部與東部活斷層的地形學研究。臺灣師範大學地理研究所地理研究報告,9,20-72。
余水倍(1989)台東縱谷地區之地殼變形研究。國立中央大學地球物理研究所博士論文,共117頁。
沈里俊(2003)利用GPS衛星測量在屏東-高雄地區地殼變形觀測之研究。國立台灣大學理學院地質科學所碩士論文,共114頁。
宋國城、王乾盈、林慶偉、胡植慶、葉永田、楊耿明、劉平妹、劉家瑄、劉聰桂、鄧屬予(1998)臺灣的活斷層研究規劃報告書,國科會專題研究計畫成果報告,154頁。計畫編號:NSC87-2119-M-006-002。
林明聖、蕭謙麗(1997)米崙礫岩台地上的橫移斷層系統。東台灣研究,3,13-30。
林啟文、張徽正、盧詩丁、石同生、黃文正(2000)台灣活動斷層概論第二版-五十萬分之一台灣活動斷層分佈圖說明書。經濟部中央地質調查所特刊,13,79-80。
林朝棨(1957)台灣地形。台灣省文獻委員會,共423頁。
林朝棨(1962)花蓮地方的第四系-台灣之第四紀研究(三)。國家長期發展科學委員會研究報告,共42頁。
洪奕星(2007)台灣區地下水觀測網第三期96年度水文地質調查研究計畫-沉積環境與生物地層對比研究(1/2)。中央地質調查所報告第96-29號。
俞何興、宋國士(1998)花蓮海底峽谷之形貌及地體構造意義。地質,19(1),49-67。
張舜傑(1994)以淺層反射震測法調查花蓮市地區地下地質構造。國立中央大學地球物理研究所碩士論文,共109頁。
游明聖(1994)台東縱谷斷層帶中之橫移斷層特徵。地質,14-1,121-147。
游明聖、蕭謙麗(1997)從大地測量談台東縱谷的楔形斷層模型。第十六屆測量學及應用研討會,17-26。
 
黃孟涵(2006)以合成孔徑雷達干涉法研究台灣之地殼變形。國立台灣大學理學院地質科學所碩士論文,共184頁。
黃信樺(2007)台灣東北地區的地震構造︰由碰撞末期轉變為隱沒拉張之構造特性。國立台灣大學理學院地質科學所碩士論文,共110頁。
曾清涼、儲慶美(1999)GPS衛星測量原理與應用。成功大學衛星資訊研究中心。
楊名(1997)GPS靜態及動態測量”GPS衛星定位測量實務”(曾清涼、余致義、何慶雄、劉啟清、楊名編著)。成功大學衛星資訊研究中心。
楊貴三(1986)臺灣活斷層的地形學研究-特論活斷層與地形面的關係。私立中國文化大學地學研究所博士論文,共178頁。
廖宏祥(2006)米崙斷層淺層震測研究。國立中正大學地震研究所碩士論文,共82頁。
劉政、黃明偉、蔡忠宏、劉瑩三、陳文山、顏宏元、蔡義本(2006)北埔斷層活動與構造特徵研究之初探。中國地質學會九十五年年會暨學術研討會。
盧志恆、林明聖、顏君毅、張中白(2009)應用永久散射體差分干涉雷達探討花蓮市附近的斷層活動與地表變形。中國地球物理學會與中華民國地質學會98 年年會暨學術研討會。
謝孟龍、鄧屬予(1994)米崙礫岩的岩相及沈積環境。地質14-1,201~217。
鍾令和、石同生、劉彥求、許文靈、謝中敏、吳文綜(2004)活動斷層調查報告-米崙斷層。經濟部中央地質調查所,共17頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43989-
dc.description.abstract台灣位於歐亞大陸板塊與菲律賓海板塊的交界帶,一個產生弧陸碰撞的地理位置;台灣因此造山隆起,造就了遍佈的活動斷層且頻繁的地震活動。原本逆衝到歐亞大陸南海板塊上的菲律賓海板塊,在花蓮北部地區轉為向北隱沒到歐亞大陸板塊之下,使得這個區域正好介於北邊向東南運動(宜蘭蘇澳至新城),及南邊向西北運動(海岸山脈)兩不同運動方向塊體中間之構造轉換帶上,因此較之其他地區有更複雜的地表活動構造。本區域主要之活動構造為米崙斷層及近期有明顯地表變動的北埔線型。1951 年花蓮發生規模7.3之大地震,地表沿著米崙斷層產生破裂,上盤相對於下盤有1.2公尺的垂直抬升及2公尺的左移動量;而北埔線型在近幾十年來,一直因地形的特徵被描述可能為一活動構造。
本研究藉由台灣四十公尺數值高程模型及GPS-RTK地形剖面的測量,獲得花蓮北部地區的地形資料,並利用構造地形學之概念進行地形之分析,判定構造可能分佈之位置,並推測其可能之地下形貌。為了更瞭解及探討花蓮地區近期的地殼變形運動,本研究佈置了密集的GPS觀測網,包括31個定期觀測點,並於2007年4月至2009年2月間完成5次測量,得到近2年來花蓮地區水平方向之地殼變形速度場,並利用速度場向量進而進行此區域的水平面應變分析。另外並利用D-InSAR技術來觀測此地區垂直之地表變形量,補足GPS短期觀測在高程上精度較差之缺憾。
由地形崖分佈位置的地形分析,可知道米崙斷層南延後方向可能由東北轉向東南而在花蓮南濱附近出海,但地形崖可能受到河流侵蝕而有向東偏移的現象,所以斷層位置也可能在地形崖之西邊。分析北埔地區北寬南窄,崖北低南高的地表約3公里長的隆起線型,本研究另稱其為北埔構造脊。綜合構造脊走向及當地應力方向,推測其為擠壓及逃脫構造架構下,壓縮平移(Transpression)斷層系統活動所造成的正型開花構造。
GPS及D-InSAR地殼變形觀測結果顯示,相對於澎湖白砂S01R,花蓮地區地殼移動以13-41 mm/yr向西北方移動,方位角介於295-360度之間,明顯是受到菲律賓海板塊西北聚合作用的影響。而從全球參考框架(ITRF2000)下來看GPS的速度向量,則可以觀察到花蓮地區地殼變形以0.5-16 mm/yr的速率向方位角89-271度方向移動。本研究推測此現象是由於海岸山脈在海底的地下向西北方向推擠而發展出之擠壓-脫曳之地體構造,花蓮北部地區塊體因擠壓而逃逸至東北方向相對較自由之空間。此外,由GPS及應變分析資料可明顯觀察到花蓮北部地區塊體除了有向東活動外,也呈明顯順時針旋轉的傾向。米崙斷層可能為因此機制而發展出之斷層,使塊體能更容易向上抬升及向東北方向被擠出,在此狀況下,米崙斷層為一後期形成之高角度以左移為主之活動斷層,與海岸山脈斷層平行而不相連。
在米崙斷層的活動上,GPS顯示有較明顯的左移運動,速率約為3-8 mm/yr,垂直抬升之變動量則較小,約為1 mm/yr。間震時期的慢活動速率可能代表米崙斷層為一鎖住之斷層,能量以地震事件釋放為主。此外,測量資料也顯示美崙台地內部也有明顯變形之現象,說明內部可能有其它次要活動構造的存在。
zh_TW
dc.description.abstractEastern Taiwan has long been well-known as sitting at the collision suture between the Eurasian and Philippine Sea plates which is characterized by numerous earthquakes and several active faults. The Hualien City is located at the transition point at the northern end of the Longitudinal Valley, whereas the Philippine Sea plate westward thrusts upon the Eurasian plate in the south, while dives under the Eurasian plate from the latitude of Hualien northwards. At least two major active faults have been documented in this relatively complex area of transition zone, in addition to the Coastal Range fault on the northwestern side of the Coastal Range. The Milun fault, on which it ruptured during the 1951 M=7.3 Hualien earthquake, has been mapped running through the city of Hualien, showing coseismic slips of 1.2 and 2 m for its vertical and sinistral slip respectively during the 1951 earthquake. The Beipu fault or lineament, by contrast, was only revealed by its geomorphic feature.
In this study, we used 40m-DTM and several high-resolution topographic profiles obtained from GPS-RTK measurement to characterize the geomorphic features related to the aforementioned two structures. Besides, we deployed repeated campaign measurements of a dense network of GPS stations. We carried out measurements for five times during April 2007 to February 2009, in order to obtain the horizontal GPS velocity and subsequent strain analysis. Furthermore, we carried out D-InSAR analysis to observe and monitor the vertical crustal deformation.
Several pieces of the geomorphic evidence show that the Milun fault extends southward and probably turns southeastward into the sea. Nevertheless, it remains problematic because GPS velocities show that the surface trace of the Milun fault might lie farther west to the geomorphic scarp, which seems to be modified by river erosion that made the scarp retrieve to the east. As for the Beipu structure, base on its geomorphic features, we tend to interpret it as a positive flower structure, presumably resulted from left-lateral strike slip on the Beipu fault, although the GPS horizontal velocities and InSAR analysis indicated little tectonic rate occurred along the Beipu structure.
The GPS results show that Hualien area moves northwestward at a rate of 13-41 mm/yr relative to the stable reference of the station S01R at Penghu, and the orientation is 295-360 degree. On the other hand, the same results under ITRF2000 reference framework illustrate a much intriguing deformation pattern, with a likely eastward extrusion of the Meilun Tableland and the Beipu area, north of the Coastal Range. The Milun fault shows a small sinistral slip at the rate about 3-8 mm/yr; however, our D-InSAR results show there is no significant vertical offset across the Milun fault in the studied period, with a rate of about 1 mm/yr. We thus interpret that the Milun fault probably is now locked, so that the stress were accumulated during the interseismic period, and it would release to cause earthquake and surface movement in the future.
The strain analysis from the GPS measurements demonstrate that the northern half of the Hualien area shows a strong clockwise rotation, whereas the southeast part shows a moderate counter-clockwise rotation. We suspect this phenomena is a result of collision-extrusion tectonics that is initiated by the northwest compression of the Coastal Range under the sea east off the Haulien area to push the Meilun Tableland and the Beipu area not only upward but also eastward. The Milun fault may probably developed from this mechanism to let the block more easily to move to free space in the up and east directions. In this case, the Milun fault is more likely a high-angle sinistral fault that is subparallel to the Coastal Range fault, and these two faults might not necessarily connect to each other.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:35:20Z (GMT). No. of bitstreams: 1
ntu-98-R96224221-1.pdf: 20273277 bytes, checksum: d7f7d5f4257531b7229ba1391aa15fd1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 Ⅰ
致謝 II
中文摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1研究動機與目的 1
1.1.1 花蓮地區的關鍵性 1
1.1.2 將GPS等新技術應用於斷層活動研究 5
1.2論文大綱 6
第二章 區域地質與地體構造背景 7
2.1地體構造 7
2.2地形與地層概述 10
2.2.1地形 10
2.2.2地層 10
2.3花蓮北部地區大地構造特性 13
2.4活動斷層研究 16
2.4.1米崙斷層 16
2.4.2美崙台地上之其他斷層 17
2.4.3美崙台地之長期地殼變形 20
2.4.4北埔線型 21
2.4.5小結 23
第三章 研究方法 24
3.1地形分析 24
3.1.1構造地形學 24
3.1.2數值高程模型 26
3.1.3即時動態GPS定位(Real Time Kinematic GPS, GPS-RTK) 27
3.2 GPS觀測 29
3.2.1 GPS簡介 29
3.2.2應變分析 35
3.3 D-InSAR測量 38
3.3.1 SAR影像簡介 38
3.3.2 InSAR基本原理 39
3.3.3 D-InSAR處理流程 40
第四章 研究成果與分析 43
4.1地形分析結果 43
4.1.1四十公尺數值地形模型分析結果 43
4.1.2動態全球衛星系統(GPS-RTK)測量結果 46
4.2 GPS結果 50
4.2.1 GPS速度場 50
4.2.2應變率分析結果 56
4.3 D-InSAR結果 60
4.4近斷層大地測量結果 67
第五章 討論 70
5.1主要構造可能之地下形貌 70
5.1.1米崙斷層 70
5.2花蓮地區大地構造活動特性 76
5.3米崙斷層活動速率綜合比較 80
5.3.1短期活動速率比較 80
5.3.2長期活動速率與短期活動速率之比較 81
5.4北埔構造脊活動特性 83
5.5構造間相互之關聯性 84
第六章 結論 89
參考文獻 91
附錄A 花蓮地區GPS觀測站時間序列 97
附錄B SAR影像描述檔 101
附錄C Snaphu執行設定檔 105
dc.language.isozh-TW
dc.subject新構造zh_TW
dc.subjectRTKzh_TW
dc.subject花蓮zh_TW
dc.subjectIn-SARzh_TW
dc.subjectGPSzh_TW
dc.subject地殼變形zh_TW
dc.subject構造地形zh_TW
dc.subjectTectonic geomorphologyen
dc.subjectIn-SARen
dc.subjectGPSen
dc.subjectHualienen
dc.subjectNeotectonicen
dc.subjectCrustal deformationen
dc.subjectRTKen
dc.title台灣花蓮北部地區的新構造與近期地殼變形運動zh_TW
dc.titlePresent-day Crustal Deformation and Neotectonics in Northern Hualien, Taiwanen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡植慶,朱傚祖,顏君毅
dc.subject.keyword花蓮,新構造,構造地形,地殼變形,GPS,In-SAR,RTK,zh_TW
dc.subject.keywordHualien,Neotectonic,Tectonic geomorphology,Crustal deformation,GPS,In-SAR,RTK,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2009-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
19.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved