請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43979完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王 倫(Lon Wang) | |
| dc.contributor.author | Meng-Hsun Wan | en |
| dc.contributor.author | 萬孟勳 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:34:57Z | - |
| dc.date.available | 2010-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-13 | |
| dc.identifier.citation | [1] M. Panniccia, and S. Koehl. “The Silicon Solution,” IEEE Spectr., Vol. 42, No. 10, 38-43, 2005.
[2] F. Romanato, D. Cojoc, E. D. Fabrizio, M. Galli, and D. Bajoni, “X-ray and electron-beam lithography of three-dimensional array structures for photonics”, J. Vac. Sci. Technol. B, Vol. 21, No.6, 2912-2917, 2003. [3] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, Vol. 426, No. 6968, 816-819, 2003. [4] L. Tong, J. Lou, Z. Ye, G. T. Svacha and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology, Vol. 16, No. 9, 1445-1448, 2005. [5] M. Sumetsky, Y. Dulashko and A. Hale, “Fabrication and study of bent and coiled free silica nanowires Self-coupling microloop optical interferometer,” Opt. Express, Vol. 12, No. 15, 3521-3531, 2004. [6] G. Brambilla, V. Finazzi and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express, Vol. 12, No. 10, 2258-2263, 2004. [7] G. Brambilla, F. Xu and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett., Vol. 42, No. 9, 517-519, 2006. [8] Y. K. Lizé, E. C. Mägi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express, Vol. 12, No. 14, 3209-3217, 2004. [9] Y. Takeyoshi and T. Ishigure, “Multichannel parallel polymer waveguide with circular W-shaped index profile cores,” IEEE Photon. Tech. Lett., Vol. 19, No. 22, 1795-1797, 2007. [10] S. M. Cho, C. S. Chang and L. A. Wang, “Fabrication of micro/nano optical wires with modified fiber-drawing process,” International Conference on Communications, Circuits and Systems, pp. 717-719, 2008. [11] C. Joenathan and R. M. Bunch, “Diameter measurement of single-mode fiber by using interferometric and imaging techniques,” Appl. Optics., Vol. 32, No. 30, 5989-5996, 1993. [12] J. A. Ferrari and E. M. Frins, “Interferometric method for fiber diameter determination,” Opt. Eng., Vol. 35, No. 4, 1050-1053. 1996. [13] S. A. Khodier, “Measurement of wire diameter by optical diffraction,” Opt. Laser Technol., Vol. 36, No. 1, 63-67, 2004. [14] W. Tang, Y. Zhou and J. Zhang, “Improvement on theoretical model for thin-wire and slot measurement by optical diffraction,” Meas. Sci. Technol., Vol. 10, No. 11, N119-N123, 1999. [15] J. F. Owen, P. W. Barber, B. J. Messinger and R. K. Chang, “Determination of optical-fiber diameter from resonances in the elastic-scattering spectrum,” Opt. Lett., Vol. 6, No. 6, 272-274, 1981. [16] A. Ashkin, J. M. Dziedzic and R. H. Stolen, “Outer diameter measurement of low birefringence optical fibers by a new resonant backscatter technique,” Appl. Optics, Vol. 20, No. 13, 2299-2303, 1981. [17] L. S. Watkins, “Scattering from side-illuminated clad glass fibers for determination of fiber parameters,” J. Opt. Soc. Am., Vol. 64, No. 6, 767-772, 1974. [18] D. H. Smithgall, L. S. Watkins and R. E. Frazee, Jr., “High-speed noncontact fiber-diameter measurement using forward light scattering,” Appl. Optics., Vol. 16, No. 9, 2395-2402, 1977. [19] Y. Nishiyama, S. Kurita, et al, “Diameter and refractive index of a cylindrical thread determined by scattered light pattern,” Opt. Rev., Vol. 8, No. 2, 90-94, 2001. [20] F. Warken and H. Giessen, “Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy,” Opt. Lett., Vol. 29, No. 15, 1727-1729, 2004. [21] L. G. Cohen and P. Glynn, “Dynamic measurement of optical fiber diameter,” Rev. Sci. Instrum., Vol. 44, No. 12, 1749-1752, 1973. [22] M. Dobosz, “Measurement of fiber diameter using a edge diode beam of light,” Opt. Commun., Vol. 58, No. 3, 172-176, 1986. [23] Beta LaserMike Model 200FI diameter gauge: http://www.betalasermike.com [24] H. C. van de Hulst, Light Scattering by Small Particles, (Wiley, New York, 1957). [25] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1998) [26] M. Kerker, The scattering of light, and other electromagnetic radiation, (Academic Press, New York and London, 1969). [27] K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive-index profiles,” Opt. Quantum Electron. Vol. 11, No. 2, 185-196, 1979. [28] M. Young, “Optical fiber index profiles by the refracted-ray method (refracted near-field scanning),” Appl. Opt., Vol. 20, No. 19, 3415-3422, 1981. [29] K. W. Raine, J. G. N. Baines and D. E. Putland, 'Refractive-index profiling – state of the art,' J. Lightwave Technol., Vol. 7, No. 8, 1162-1169, 1989. [30] Photon Kinetics S14 refractive index profiler: http://www.pkinetics.com/ [31] EXPO HR-9200: http://www.expo.com/ [32] L. Mccauchan and E. E. Bergmann, “Index distribution of optical waveguides from their mode profile,” J. Lightwave Technol., Vol. LT-1, No. 1, 241-244, 1983. [33] K. Morishita, “Refractive-index-profile determination of single-mode optical fibers by a propagation-mode near-field scanning technique,” J. Lightwave Technol., Vol. LT-1, No. 3, 445–449, 1983. [34] Y. Ding, J. Wei, et al, “Construction of refractive-index profile of single mode fiber from the near-field technology with an inverse algorithm method.” Opt. Eng., Vol. 45, No. 8, 2006. [35] T. Okoshi and K. Hotate, “Refractive-index profile of an optical fiber: its measurement by the scattering-pattern method,” Appl. Optics., Vol. 15, No. 11, 1976. [36] C. Saekeang and P. L. Chu, “Nondestructive determination of refractive-index profile of an optical fiber – backward light-scattering method,' Appl. Optics., Vol. 18, No. 7, 1110-1116, 1979. [37] D. Marcuse, “Refractive index determination by the focusing method,” Appl. Optic., Vol. 18, No. 1, 9-13, 1979. [38] H. M. Presby, D. Marcuse, et al, ' Automatic refractive-index profiling of optical fibers,' Appl. Optic., Vol. 17, No. 14, 2209-2214, 1978. [39] K. Tatekura, “Determination of the index profile of optical fibers from transverse interferograms using Fourier theory,” Appl. Optic., Vol. 22, No. 3, 460-463, 1983. [40] Q. Zhong and D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol., Vol. 12, No. 9, 1517-1523, 1994. [41] S. T. Huntington, P. Mulvaney, et al., “Atomic force microscopy for determination of refractive index profiles of optical fibers and waveguides: A quantitative study,” J. Appl. Phys., Vol. 82, No. 6, 2730-2734, 1997. [42] A. Barty, K. A. Nugent, et al., “Quantitative optical phase microscopy,” Opt. Lett., Vol. 23, No. 11, 817-819, 1998. [43] A. Roberts, E. Ampem-Lassen, et al., “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett., Vol. 27, No. 23, 2061-2063, 2002. [44] E. Ampem-Lassen, S. T. Huntington, et al., “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express, Vol. 13, No. 9, 3277-3282, 2005. [45] M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am., Vol. 73, No. 11, 1434-1441, 1983. [46] From Corning Optical Fiber specification: http://www.corning.com/opticalfiber/. [47] H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett., Vol. 1, No. 6, 142-145, 1989. [48] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics”, Chapter 8, (Wiley, New York, 1991) [49] J. D. Love, W. M. Henry, W. J. Stewart, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J Optoelectronics., Vol. 138, No. 5, 343–354, 1991. [50] R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. Part 2: Experimental and theoretical quantification,” IEE Proc.-J Optoelectronics., J., Vol. 138, No. 5, 355–364, 1991. [51] L. Tong, J. Lou, E. Mazar, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express, Vol. 12, No. 6, 1025-1035, 2004. [52] P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett., Vol. 30, No. 11, 1273-1275, 2005. [53] L. Shi, X. F. Chen, H. J. Liu, Y. P. Chen, Z. Q. Ye, W. J. Liao, Y. X. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express, Vol. 14, No. 12, 5055-5060, 2006. [54] S. T. Huntington, S. J. Ashby, M.C. Elias, and J. D. Love, “Direct measurement of core profile diffusion and ellipticity in fused-taper fibre couplers using atomic force microscopy,” Electron. Lett., Vol. 36, No. 2, 121-123, 2000. [55] K. Lyytikäinen, S. T. Huntington, et al., “Dopant diffusion during optical fibre drawing,” Opt. Express, Vol. 12, No. 6, 972-977, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43979 | - |
| dc.description.abstract | 當半導體元件愈來愈小,傳輸的速度愈來愈快,微小化的光通訊系統及光電基板可望成為未來發展的方向之一。我們實驗室以改良的微小化抽絲塔,在可控制的條件之下成功製作出數十微米至數百奈米等級的微奈米導光線。因應抽絲塔的製程需求,我們開發出一套即時直徑量測系統,用來即時檢測並對製程系統做調整。量測方法使用雷射側向入射、觀測散射條紋的方式,並對此量測方法的精確度做了驗證。此外,為了確認製造出的微奈米導光線之導光性質,有必要了解其纖核及纖殼的變化狀態。我們使用一個基於定量相位顯微術的方法,藉由觀察光纖側面亮場成像之方式,檢測光纖的截面折射率分布。基於此方法,可以了解光纖的性質,也對各種不同種類的光纖分別做了檢測及分析。 | zh_TW |
| dc.description.abstract | With semiconductor devices become smaller and the transmission speed becomes faster, minimized optical transmission system and the optical integrated circuit are the candidates for future application and development. We utilized a modified-miniature fiber drawing tower to fabricate micro-nano optical wires (MNOWs) from few tens of micrometers down to few hundreds of nanometers scale under controllable conditions. For the necessity of the fiber drawing fabrication process, we develop a real-time diameter measurement system for in situ detecting and adjusting the fabrication parameters. The method is to pass a laser beam through a fiber and characterize its scattering pattern from which the diameter of the fiber is determined. The verification of accuracy and precision was also done. Furthermore, to confirm the light propagation property of the fabricated MNOWs, it is necessary to examine the variation of core and cladding. We utilized a method based on quantitative phase microscopy (QPM), which observe the bright field images of side view of a fiber to measure the refractive index profile along the cross section. From this approach, we can examine the fiber property, and measurements to a few kinds of fibers were done and analyzed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:34:57Z (GMT). No. of bitstreams: 1 ntu-98-R96941003-1.pdf: 2966873 bytes, checksum: c5487ff8e772253b1e3a8f26308b2e3b (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Statement of Contributions III Contents IV List of Figures VII List of Abbreviations XIII Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Organization of the Thesis 4 Chapter 2 Fabrication of MNOW 5 2-1 Experimental Setup 5 2-2 Modified Multi-Stage Process for MNOW Fabrication 9 Chapter 3 Fiber Diameter Measurement 13 3-1 Overview 13 3-2 Principle 15 3-3 Experimental Setup and Measurement Scheme 21 3-4 Measurement Results and Discussion 31 3-4-1 Comparison Between Experimental and Simulation Results 31 3-4-2 Confirmation of the Measurement Accuracy and Precision 34 3-4-3 Real-time Measurement Results during Fiber Drawing Process 42 3-4-4 Discussion of the Measurement Limit 50 3-5 Summary 52 Chapter 4 Fiber Refractive Index Profile Measurement 54 4-1 Overview 54 4-2 Principle 56 4-3 Experimental Setup 60 4-4 Results and Discussion 63 4-4-1 Single Mode Fiber 63 4-4-2 Multi-Mode Fiber 72 4-4-3 Photosensitive Fiber 75 4-4-4 Erbium-doped Fiber 78 4-4-5 Tapered Fiber 83 4-4-6 MNOW from the Drawing Process 88 4-5 Summary 98 Chapter 5 Conclusion and Future Work 99 5-1 Conclusion 99 5-2 Future Work 100 References 101 Publications 109 | |
| dc.language.iso | en | |
| dc.subject | 微奈米導光線 | zh_TW |
| dc.subject | 抽絲塔 | zh_TW |
| dc.subject | 直徑量測 | zh_TW |
| dc.subject | 散射條紋法 | zh_TW |
| dc.subject | 折射率分布量測 | zh_TW |
| dc.subject | 定量相位顯微術 | zh_TW |
| dc.subject | scattering pattern method | en |
| dc.subject | quantitative phase microscopy | en |
| dc.subject | refractive index profiling | en |
| dc.subject | drawing tower | en |
| dc.subject | diameter measurement | en |
| dc.subject | micro-nano optical wire | en |
| dc.title | 即時光纖直徑量測技術及折射率分布量測技術應用於微奈米導光線製作 | zh_TW |
| dc.title | Real-Time Fiber Diameter Measurement Technique and Refractive Index Profiles Measurement Technique Applied to Micro-Nano Optical Wires Fabrication | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曹恆偉,黃鼎偉 | |
| dc.subject.keyword | 抽絲塔,微奈米導光線,直徑量測,散射條紋法,折射率分布量測,定量相位顯微術, | zh_TW |
| dc.subject.keyword | drawing tower,micro-nano optical wire,diameter measurement,scattering pattern method,refractive index profiling,quantitative phase microscopy, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
