請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43974
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林達德 | |
dc.contributor.author | Shyh-Shin Hwang | en |
dc.contributor.author | 黃世欣 | zh_TW |
dc.date.accessioned | 2021-06-15T02:34:45Z | - |
dc.date.available | 2009-08-14 | |
dc.date.copyright | 2009-08-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-14 | |
dc.identifier.citation | 1.伴敏三。1971。人工乾燥いおけゐ米の胴裂れい關ずゐ實驗的研究。NO.8報告。日本農業機械化研究所。
2.陳加忠、雷鵬魁、曹之祖。1995。稻穀含水率測定烤箱技術之研究。農業工程學報 41(2):59-70。 3.陳貽倫。1995a。均化對稻穀薄層乾燥速率之影響。農業機械學刊。4(1):49-55。 4.陳貽倫。1995b。影響稻米品質的因素。稻穀倉儲加工作業技術手冊。第二輯。P.1-26。 5.陳貽倫。1996。均化對稻穀減乾率影響之在研究。臺大農學院研究報告。36(4)。304-320。 6.馮丁樹譯。1978。穀物乾燥。P.1-3。台北:徐氏基金會。 7.馮丁樹。1994。稻穀乾燥原理。稻穀倉儲加工作業技術手冊。第一輯。P.1-12。 8.馮丁樹。1998。穀物乾燥中心推行成果專刊。P.30-32。台灣省政府農林廳。 9.劉斌、李業波、毛志懷。2000。水稻吸濕過程的內部傳質及裂紋機理研究。農業工程學報。16 (1) :P 117-120。 10.盧守耕。1958。稻作學。P.47-51,P.76。初版,台北:國立編譯館。 11.盧福明。1986。農產加工工程學。初版,P.186-188。台北:茂昌。 12.Arora, V. K., S. M. Henderson and T. H. Burkhardt. 1973. Rice drying cracking versus thermal and mechanical properties. Trans. of the ASAE 16(2):320-327. 13.Barreiro, P., J. Ruiz-Cabello, M. E. Fernandez-Valle, C. Ortiz and M. Ruiz-Altisent. 1999. Mealiness assessment in apples using MRI techniques. Magnetic Resonance Imaging 17(2):275-281. 14.Beyea, S. D., B. J. Balcom, I. V. Mastikhin, T. W. Bremner, R. L. Armstrong and P. E. Grattan-Bellew. 2000. Imaging of heterogeneous materials with a turbo spin echo single-point imaging technique. Journal of Magnetic Resonance 144:255-265. 15.Brooker, D. B., F. W. Bakker-Arkema and C. W. Hall. 1992. Drying and Storage of Grains and Oilseeds. New York, NY: Van Nostrand Reinhold Pub. Inc. 16.Brosio, E., F. Conti, C. Lintas and S. Sikova. 1978. Moisture determination in starch-rich food products by pulsed nuclear magnetic resonance. J. Food Technology 13:107-116. 17.Casey, J. C. and C. A. Miles. 1974. determination of the fat content of meat using nuclear magnetic resonance. J. Sci. Food Agric. 25:1151-1161. 18.Chen, P., M. J. McCarthy and R. Kauten. 1989. NMR for internal quality evaluation of fruits and vegetables. Trans. of the ASAE 32(5):1747-1753. 19.Cho, S. I. and C. H. Chung. 1997. Development of a nondestructive moisture sensor using proton NMR Trans. of the ASAE 40(4):1129-1132. 20.Chudek, J. A. and G. Hunter. 1997. Magnetic resonance imaging of plants. Progress in Nuclear Magnetic Resonance Spectroscopy. 31 (Part 1):43-62. 21.Cnossen, A. G. and T. J. Siebenmorgen. 2000. The glass transition temperature concept in rice drying and tempering: effect on milling quality. Trans. of the ASAE 43(6):1661-1667. 22.Cnossen, A. G., T. J. Siebenmorgen and W. Yang. 2002. The glass transition temperature concept in rice drying and tempering: effect on drying rate. Trans. of the ASAE 45(3):759–766. 23.Dechene, R. and A. Roy. 1990. On-line measurements using NMR. In: Food Process Automation. ASAE Publication 02-90, P184-193. St. Joseph, MI:ASAE. 24.Ece, M. C. and A. Cihan. 1993. A liquid diffusion model for drying rough rice. Trans. of the ASAE 36(3):837–840. 25.Frías, J. M., L. Foucat, J. J. Bimbenet and C. Bonazzi. 2002. Modeling of moisture profiles in paddy rice during drying mapped with magnetic resonance imaging. Chemical Engineering Journal 86:173–178. 26.Fukuoka, Mika, H. Watanabe, T. Mihori and S. Shimada. 1994. Moisture diffusion in a dry soybean seed measured using pulsed field gradient NMR. Journal of Food Engineering 23:533-541. 27.Garnczarska, M., T. Zalewski and M. Kempka. 2007. Water uptake and distribution in germinating lupine seeds studied by magnetic resonance imaging and NMR spectroscopy. Physiologia Plantarum 130:23–32. 28.Glidewell, S. M. 2006. NMR imaging of developing barley grains. Journal of Cereal Science 43:70–78. 29.Grosh, G. M. and M. Milner. 1959. Water penetration and internal cracking in tempered wheat grains. Cereal Chemistry 36:260-273. 30.Ghosh, P. K., D. S. Jayas, M. L. H. Gruwel and N. D. G. White. 2005. Non-destructive measurement of moisture pattern using MRI in a wheat kernel during drying. ASAE Paper No. 05312. St. Joseph, MI: ASAE. 31.Ghosh, P.K., D.S. Jayas, M.L.H. Gruwel and N.D.G. White. 2006a. Magnetic resonance imaging studies to determine the moisture removal patterns in wheat during drying. Candian Biosystems Engineering 48:7.13-7.18. 32.Ghosh, P. K., D. S. Jayas, M. L. H. Gruwel, N. D. G. White. 2006b. Magnetic resonance image analysis to explain moisture movement during wheat drying. Trans. of the ASABE 49(4): 1181−1191. 33.Gomi, Y., M. Fukuoka, T. Mihori and H. Watanabe. 1998. The rate of starch gelatinization as observed by PFG-NMR measurement of water diffusivity in rice starch/water mixtures. Journal of Food Engineering 36:359-369. 34.Gonzalez, J. J., K. L. McCarthy and M. J. McCarthy. 1998. MRI method to evaluate internal structural changes of tomato during compression. Journal of Texture Studies 29(5):537-551. 35.Haghighi, K. and L. J. Segerlind. 1988. Modeling simultaneous heat and mass transfer in an isotropic sphere-A finite element approach. Trans. of the ASAE 31(2):629-637. 36.Horigane, A. K., H. Takahashi, S. Maruyamac, K. Ohtsubo and M. Yoshid. 2006. Water penetration into rice grains during soaking observed by gradient echo magnetic resonance imaging. Journal of Cereal Science 44:307–316. 37.Horigane, A. K., W. M. H. G. Engelaart, S. Maruyamat, M. Yoshida, A. Okubo and T. Nagata. 2001. Visualisation of moisture distribution during development of rice caryopses by nuclear magnetic resonance microimaging. Journal of Cereal Science 33:105–114. 38.Horigane, A. K., W. M. H. G. Engelaar, H. Toyoshima, H. Ono, M. Sakai, A. Okubo and T. Nagata. 2000. Differences in hollow volumes in cooked rice grains with various amylase contents as determined by NMR micro imaging. Journal of Food Science 65(3):408-412. 39.Hwang, S. S. and T. T. Lin. 2004. Analysis of moisture distribution in rice kernels using magnetic resonance imaging. ASAE Paper No. 046153. St. Joseph, MI: ASAE. 40.Irudayaraj, J. and K. Haghighi. 1993. Stress analysis of viscoelastic material during drying, Part 2: Application to grain kernels. Drying Technology 11(5):929-959. 41.Igathinathane, C. and P. K. Chattopadhyay. 1999. Moisture difusion modelling of drying in parboiled paddy components. Part I: starchy endosperm. Journal of Food Engineering 41:79-88. 42.Ishida, N., S. Naito and H. Kano. 2004. Loss of moisture from harvested rice seeds on MRI .Magnetic resonance imaging 22: 871–875. 43.Jia, C. C., D. W. Sun and C. W. Cao. 2000a. Mathematical simulation of stresses within a corn kernel during drying. Drying Technology 18(4&5):887-906. 44.Jia, C. C., D. W. Sun and C. W. Cao. 2000b. Mathematical simulation of temperature and moisture fields within a grain kernel during drying. Drying Technology 18(6):1305-1325. 45.Jia, C.-C., W. Yang, T. J. Siebenmorgen and A. G. Cnossen. 2002. Development of computer simulation software for single grain kernel drying, tempering, and stress analysis. Trans. of the ASAE 45(5):1485-1492. 46.Kang, S. and S. R. Delwiche. 1999. Moisture diffusion modeling of wheat kernels during soaking. Trans. of the ASAE 42(5):1359-1365. 47.Khir, R., Z. Pan A. Salim. 2006. Drying rates of thin layer rough rice drying using infrared radiation. ASABE Paper No: 066011. MI: St. Joseph. 48.Kikuchi, K., M. Koizumi, N. Ishida and H. Kano. 2006. Water uptake by dry beans observed by micro-magnetic resonance imaging. Annals of Botany 98: 545–553 49.Kunze, O. R. 1979. Fissuring of the rice grain after heated air drying. Trans. of the ASAE 22 (5): 1197-1201, 1207. 50.Lague, C. and B. M. Jenkins. 1991. Modeling pre-harvest stress-cracking of rice kernels (Part 1, Part 2). Trans. of the ASAE 34(4):1798-1823. 51.Leisen, J., B. Hojjatie, D. W. Coffin and H. W. Beckham. 2001. In-plane moisture transport in paper detected by magnetic resonance imaging. Drying technology 19(1):199–206. 52.Lu, R. and T. J. Siebenmorgen. 1992. Moisture diffusivity of long-grain rice components. Trans of the ASAE 35(6):1955-1961. 53.MacFall, J. S., G. A. Johnson and P. J. Kramer. 2001. Comparative water uptake by roots of different ages in seedlings of loblolly pine (Pinus taeda L.). New Phytologist 119(4):551-560. 54.Manz, B., K. Müller, B. Kucera, F. Volke and G. L.-M. 2005. Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiology 138:1538–1551. 55.Mohoric, A., F. Vergeldt, E. Gerkema, A. D. Jager, J. V. Duynhoven, G. V. Dalen and H. V. As. 2004. Magnetic resonance imaging of single rice kernels during cooking. Journal of Magnetic Resonance 171:157–162. 56.Pearson, R. M., L. K. Ream J. Q. Adams. 1987. The use of small magnetic resonance spectrometers for on-line process control. Cerel Foods World 32:822-826. 57.Perez, E., R. Kauten and M. J. McCarthy. 1989. Non-invasive measurements of moisture profiles during the drying of an apple. Drying ’89, Versailles, France p.149-156. 58.Prachayawarakorn, S., N. Poomsa-ad and S. Soponronnarit. 2005. Quality maintenance and economy with high-temperature paddy-drying processes. Journal of Stored Products Research 41:333–351. 59.Rahman, A. 1989. One and Two dimensional NMR spectroscopy. New York: Elsevier Science Publishers. 60.Rollwitz, W. L. 1985. Using radiofrequency spectroscopy in agricultural applications. Agricultural Engineering 66(5):12-14. 61.Ruan, R. R. and P. L. Chen. 1998. Water in Food and Biological Materials.51-71. USA. Technomic Publishing Co. 62.Schaefer, J. and E. O. Stejskal. 1974. Carbon-13 nuclear magnetic resonance measurement of oil composition in single viable soybean. J. Am. Oil. Cem. Soc. 51:210-213. 63.Schtscherbakov, V. G., E. I. Kuptschenko and E. X. Aspiotis. 1973. Determination of the oil content in different seeds by spin echo method. Pistschew. Technol. 2:122-124. 64.Seefeldt, H. F., F. Berg, W. Kfckenberger, S. B. Engelsen and B. Wollenweber. 2007. Water mobility in the endosperm of high beta-glucan barley mutants as studied by nuclear magnetic resonance imaging. Magnetic Resonance Imaging 25:425–432. 65.Seong, I. C. and G. W. Krutz. 1989. Fruit ripeness detection by using 1H NMR. ASAE Paper No.89-6620. St. Joseph, MI:ASAE. 66.Shaw, T. M. and R. H. Elsken. 1950. Nuclear magnretic resonance absorption in hygroscopic materials. J. Chem. Phys. 8:1113-1114. 67.Song, H. and J. B. Litchfield. 1993. 3D MR Microscopy of foods during drying. AIChE Symp. Ser. 297 (Food Dehydration) 89:55-71. 68.Song, H., S. R. Dewiche and M. J. Line. 1995. Non-invasive measurements of moisture distribution in individual wheat kernels by magnetic resonance imaging. Proc. SPIE, 2345:414-422. 69.Sun, Z., W. Yang, T. J. Siebenmorgen, A. M. Stelwagen, C. Jia and A. G. Cnossen. 2002. Using dynamic shrinkage test to study tissure propagation in rice kernels. Trans. of the ASAE 45(5):1501–1504. 70.Takeuchi, S. ,M. Macada, Y. Gomi, M. Fukuoka and H. Watanabe. 1997a. The change of moisture distribution in a rice grain during boiling as observed by NMR imaging. Journal of Food Engineering 33:281-297. 71.Takeuchi, S., M. Fukuoka, Y. Gomi, M. Maeda and H. Watanabe. 1997b. An application of magnetic resonance imaging to the real time measurement of the change of moisture profile in a rice grain during boiling. Journal of Food Engineering 33:181-192. 72.Tollner, E. W. 1992. NMR for peanut maturity determination. ASAE Paper No.926057. St. Joseph, MI:ASAE. 73.Tollner, E. W. and Y. C. Hung. 1990. Magnetic resonance for measuring moisture in wheat, corn, soybean, pecans, and peanuts. ASAE Paper No.90-3008. St. Joseph, MI:ASAE. 74.Troutman, M. Y., I. V. Mastikhin, B. J. Balcom, T. M. Eads and G. R. Ziegler. 2001. Moisture migration in soft-panned confection during engrossing and aging as observed by magnetic resonance imaging. Journal of Food Engineering 48:257-267. 75.Wang, C. Y. and P. C. Wang. 1989. Nondestructive detection of core breakdown in ‘Bartlett’ pears with nuclear magnetic resonance imaging. Hort Science 24:106-109. 76.Wang, S. Y., P. C. Wang and M. Faust. 1988. Non-destructive detection of water core in apple with nuclear magnetic resonance imaging. Scientia Horticulturae 35:227-234. 77.Watanable, H., M. Fukuoka, A. Tomiya and T. Mihori. 2001. A new non-Fickian diffusion model for water migration in starchy food during cooking. Journal of Food Engineering 49:1-6. 78.Wu, B., W. Yang and C. Jia. 2004. A three-dimensional numerical simulation of transient heat and mass transfer inside a single rice kernel during the drying process. Biosystems Engineering 87(4): 191-200. 79.Yang, W., C. C. Jia, T. J. Siebenmorgen, T. A. Howell and A. G. Cnossen. 2002. Intra-kernel moisture responses of rice to drying and tempering treatments by finite element simulation. Trans. of the ASAE 45(4): 1037-1044. 80.Yang, W. and C. Jia. 2004. Glass transition mapping inside a rice kernel. Trans. of the ASAE 47(6):2009-2015. 81.Yang W., Q. Zhang and C. Jia. 2005. Understanding rice breakage through internal work, fracture energy, and glass transition of individual kernels. Trans. of the ASAE 48(3):1157−1164. 82.Zeng, S. X., R. R. Ruan, R. G. Fulcher and P. Chen. 1996. Evaluation of soybean seed coat cracking during drying: Part II. Using MRI. Drying Technology 14(7&8):1595-1623. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43974 | - |
dc.description.abstract | 本研究應用磁振影像探討單粒稻穀內部靜態水份分佈,以及在均化與浸泡過程中,內部水份經擴散與對流作用所產生之動態變化。實驗過程分別使用3.0T MRI系統之SPI脈衝序列,以及9.4T MRI系統之3D Spin echo脈衝序列進行磁振造影。首先藉由磁振造影機之參數設定試驗以取得較佳的影像,再由影像的分析探討稻穀內部水份之分佈與動態遷移。
單粒稻穀在平衡含水率下,磁振影像訊號強度並非均質且分成幾個部份,其中胚的訊號強度最高,糊粉層的強度次之,胚乳相較前兩者其訊號強度較低。在均化試驗中,稻穀以55℃熱風乾燥30分鐘之後進行均化,由於內外層之水份梯度,造成水份的擴散作用,過程中內層之擴散速度高於外層,呈現雙項指數函數的關係,兩項指數代表之意義,一者為內部水分子的擴散現象,另一者為通風環境下,受對流作用迫使水分子加速往外遷移。其結果顯示良好的通風將有助於單粒稻穀內部之均化,均化時間大約在7小時,其內外層水份可達平衡,若無通風的情況下均化時間將高達15小時以上,此遷移多發生在胚乳上,而胚很快即達到平衡,糊粉層的水份差異性並不大。 在稻穀直接浸泡的實驗中,水份經由稻殼滲透與珠孔的傳導而進入穀體內,而於胚及胚乳間擴散開來。期間米心之水份吸收可分為4個時期,由最初之遲滯時期,而到達較快速的水份增升期,而後為另一緩升時期,最後到達飽和之含水率。稻穀直接浸泡、珠孔導水、封住珠孔稻穀浸泡與封住稻殼僅以珠孔導水等四種不同的浸泡模式中,米心達飽和含水率67%需時分別約為7、17、22與32小時,在浸泡過程的兩個傳輸通路中以珠孔的傳水效率較快,而水份透過稻殼的傳輸較慢。 | zh_TW |
dc.description.abstract | The objectives of this research are to investigate the static moisture distribution within an individual rice kernel, and the dynamic moisture migration during tempering and soaking using MRI techniques. Experiments were performed separately using SPI pulse sequences in a 3T MRI system and 3D spin echo sequences in a 9.4T MRI system for image acquisition under various experimental conditions. The optimum MRI acquisition parameters were initially studied and determined for later experimentation for the assessment of static and dynamic moisture migration behaviors within individual rice kernels.
For rice kernel at equilibrium moisture content, the MR signals spatially non-homogeneous. A rice kernel has the strongest signal intensity at its embryo part. The aleurone layer has relatively weaker signal intensity while the endosperm part exhibits the least signal intensity. The signal intensity of the endosperm increases as the moisture content increases. In the tempering experiments, the rice kernels were air-dried for 30 minutes at 55℃ before image acquisition. The dynamic moisture migration was observed due to the existence of moisture gradient and the diffusion process. The transient change of the signal intensities in the endosperm was well fitted with a double exponential function suggesting that both convection and diffusion contributed to the reduction of the moisture gradient within the rice kernel during tempering. This hypothesis was further supported by the experimental data of the insulated rice kernel whose convective mass transfer was excluded. The tempering time was about 7 hours when the moisture gradient of the endosperm became minimal. The tempering time was about 15 hours for the insulated rice kernel without convective mass transfer. MRI experiments were also designed to assess the moisture migration within rice kernels under various soaking conditions. Moisture can either transport across the rice husk or via the micropyle. The dynamic change of moisture content at the central part of the endosperm was observed to have four phases: initial lag phase, rapid increase phase, slow increase phase, and the saturation phase. For the four test conditions: direct soaking, guided micropyle transport, sealed micropyle, and insulated husk, the time required to reach 67% moisture saturation at the central endosperm was 7, 17, 22 and 32 hours, respectively. The rate of moisture transport via micropyle appeared to be faster compare with the moisture transport across the rice husk. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:34:45Z (GMT). No. of bitstreams: 1 ntu-98-D88631005-1.pdf: 10113921 bytes, checksum: f661de3fa5bf81a593248f4a405a4ed5 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 誌 謝 III
摘 要 IV ABSTRACT V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 論文內容 3 第二章 文獻探討 4 2.1 稻穀的特性 4 2.1.1 稻穀的生理 4 2.1.2 稻穀乾燥作業 5 2.2 核磁共振(NMR) 8 2.2.1 核磁共振基本理論 8 2.2.2 核磁共振在農業上的應用 10 2.3 磁振影像(MRI) 10 2.3.1 磁振影像之基礎 10 2.3.2 磁振影像之水分子訊號 11 2.4 磁共振技術在穀物上的應用 12 2.5 單粒稻穀擴散模式之建立 13 第三章 研究設備與方法 15 3.1 研究設備 15 3.1.1 3.0T磁振造影設備 15 3.1.2 9.4T磁振造影設備 17 3.1.3 乾燥與稱重設備 18 3.1.4 影像分析軟體 18 3.2 研究方法 19 3.2.1 研究材料 19 3.2.2 稻穀之含水率量測 20 3.2.3 以核磁共振儀進行單粒稻穀水份分佈之造影 21 3.2.4 單粒稻穀之含水率與磁振影像強度關係試驗 24 3.2.5 單粒稻穀均化之磁振影像試驗 24 3.2.6 單粒稻穀浸潤之磁振影像試驗 26 第四章 結果與討論 29 4.1 以3.0T磁振造影之參數設定 29 4.1.1 視野(FOV)之影響 29 4.1.2 影像矩陣(Matrix)之影響 31 4.1.3 回音時間(TE)與重複時間(TR)之影響 32 4.1.4 掃描次數(NEX)之影響 33 4.1.5 脈衝角度與脈衝長度對訊號之影響 35 4.2 以9.4T磁振造影之參數設定 38 4.2.1 Muti-Echo Testing 38 4.2.2 3D Spin Echo Testing 41 4.3 單粒稻穀之磁振影像 44 4.3.1 新收穫與乾燥後稻穀之水份分佈 46 4.3.2 單粒稻穀之高解析度磁振影像 51 4.3.3 單粒稻穀之3.0T MRI各切面磁振造影 54 4.3.4 單粒稻穀之9.4T MRI各切面磁振造影 56 4.3.5 磁振影像訊號與單粒稻穀之含水率 61 4.4 單粒稻穀均化之磁振影像 63 4.4.1 自然對流之均化過程水份分佈變化 64 4.4.2 無對流之均化過程水份分佈變化 73 4.5 單粒稻穀浸泡之磁振影像 78 4.5.1 稻穀直接浸泡之水份分佈變化 78 4.5.2 珠孔封閉帶殼浸泡之水份分佈變化 92 4.5.3 珠孔導水之水份分佈變化 100 4.5.4 珠孔單側導水之水份分佈變化 108 4.5.5 剝殼浸泡之水份分佈變化 117 4.5.7 不同浸泡模式之比較 123 第五章 結論與建議 125 5.1結論 125 5.2建議 126 參考文獻 127 | |
dc.language.iso | zh-TW | |
dc.title | 以磁振影像探討單粒稻穀之水份分佈 | zh_TW |
dc.title | Assessment of Moisture Distribution in Individual Rice Kernels Using Magnetic Resonance Imaging | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 盧福明,李允中,葉仲基,鍾孝文 | |
dc.subject.keyword | 稻穀,磁振影像,均化,浸泡,擴散, | zh_TW |
dc.subject.keyword | rice kernels,MRI,tempering,soaking,diffusion, | en |
dc.relation.page | 132 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-14 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 9.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。