Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43971
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦(Han-Pang Huang)
dc.contributor.authorWei-Jen Wangen
dc.contributor.author王唯任zh_TW
dc.date.accessioned2021-06-15T02:34:39Z-
dc.date.available2011-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-13
dc.identifier.citation[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo, 'OBPRM: An
Obstacle-Based PRM for 3D Workspaces,' Proc. Int. Workshop on Algorithmic
Foundations of Robotics (WAFR), 1998.
[2] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner, 'Grasp
Planning in Complex Scenes,' IEEE-RAS International Conference on Humanoid
Robots (Humanoids07), 2007.
[3] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner, 'Manipulation Planning on
Constraint Manifolds,' IEEE International Conference on Robotics and
Automation (ICRA '09), 2009.
[4] D. Berenson, S. Srinivasa, D. Ferguson, A. C. Romea, and J. Kuffner,
'Manipulation Planning with Workspace Goal Regions,' IEEE International
Conference on Robotics and Automation (ICRA '09), 2009.
[5] D. Berenson and S. S. Srinivasa, 'Grasp synthesis in cluttered environments for
dexterous hands,' IEEE-RAS International Conference on Humanoid Robots,
Humanoids 2008, Daejeon, Korea, pp. 189-196, 2008.
[6] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, 'An integrated approach to
inverse kinematics and path planning for redundant manipulators,' Proceedings of
the IEEE International Conference on Robotics and Automation, Orlando, FL,
United states, vol. 2006, pp. 1874-1879, 2006.
[7] R. Bohlin and L. E. Kavraki, 'Path planning using lazy PRM,' Proceedings of the
IEEE International Conference on Robotics and Automation, vol. 1, pp. 521-528,
2000.
[8] B. Bounab, D. Sidobre, and A. Zaatri, 'Central axis approach for computing
n-finger force-closure grasps,' Proceedings of the IEEE International Conference
on Robotics and Automation, Pasadena, CA, United states, pp. 1169-1174, 2008.
[9] A. Bruce and G. Gordon, 'Better Motion Prediction for People-Tracking,'
Proceedings of the IEEE International Conference on Robotics & Automation
(ICRA), 2004.
92
[10] H. M. Choset, Principles of robot motion : theory, algorithms, and implementation,
Cambridge, Mass., MIT Press, 2005.
[11] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner, 'BiSpace
Planning: Concurrent Multi-Space Exploration,' Robotics: Science and Systems,
2008.
[12] E. W. Dijkstra, 'A Note on Two Problems in Connection with Graphs,' Numerical
Mathematics, vol. 1, pp. 269–271, 1959.
[13] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, 'Grasp planning via
decomposition trees,' Proceedings of the IEEE International Conference on
Robotics and Automation, Rome, Italy, pp. 4679-4684, 2007.
[14] C. Goldfeder, M. Ciocarlie, H. Dang, and P. Allen, 'The Columbia Grasp
Database,' International Conference on Robotics and Automation, 2009.
[15] D. Gottlieb, 'Robots and topology,' Proceedings of the IEEE International
Conference on Robotics and Automation, San Francisco, California, vol. 3, pp.
1689-1691, 1986.
[16] S. Gottschalk, M. C. Lin, and D. Manocha, 'OBB-Tree: A Hierarchical Structure
for Rapid Interference Detection,' ACM SIGGRAPH, pp. 171-180, 1996.
[17] K. Harada, K. Kaneko, and F. Kanehiro, 'Fast grasp planning for hand/arm systems
based on convex model,' Proceedings of the IEEE International Conference on
Robotics and Automation, Pasadena, CA, United states, pp. 1162-1168, 2008.
[18] D. Hsu, J. Tingting, J. Reif, and A. Z. S. Zheng Sun, 'The bridge test for sampling
narrow passages with probabilistic roadmap planners,' Proceedings of the IEEE
International Conference on Robotics and Automation, vol. 3, pp. 4420-4426,
2003.
[19] K. Huebner, S. Ruthotto, and D. Kragic, 'Minimum volume bounding box
decomposition for shape approximation in robot grasping,' Proceedings of the
IEEE International Conference on Robotics and Automation, Pasadena, CA,
United states, pp. 1628-1633, 2008.
[20] M. Kalisiak and M. van de Panne, 'Faster Motion Planning Using Learned Local
Viability Models,' IEEE International Conference on Robotics and Automation, pp.
2700-2705, 2007.
93
[21] M. Kalisiak and M. van de Panne, 'RRT-blossom: RRT with a local flood-fill
behavior,' Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 1237-1242, 2006.
[22] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, 'Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,' IEEE
Transactions on Robotics and Automation, vol. 12, pp. 566-580, 1996.
[23] S. Khanmohammadi and A. Mahdizadeh, 'Density avoided sampling: An
intelligent sampling technique for rapidly-exploring random trees,' Proceedings of
the 8th International Conference on Hybrid Intelligent Systems, Barcelona, Spain,
pp. 672-677, 2008.
[24] J. J. Kuffner, Jr. and S. M. LaValle, 'RRT-connect: An efficient approach to
single-query path planning,' Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 2, pp. 995-1001, 2000.
[25] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, 'Fast Proximity Queries
with Swept Sphere Volumes,' Robotics and Automation, pp. 3719-3726, 2000.
[26] J. C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991.
[27] S. M. LaValle, 'Planning Algorithms,' Cambridge Univ. Press, 2006.
[28] S. M. LaValle, 'Rapidly-Exploring Random Trees: A New Tool for Path Planning,'
Technical Report, Computer Science Dept, Iowa State University, 1998.
[29] J.-W. Li, H. Liu, and H.-G. Cai, 'On computing three-finger force-closure grasps of
2-D and 3-D objects,' IEEE Transactions on Robotics and Automation, vol. 19, pp.
155-161, 2003.
[30] T.-Y. Li and Y.-C. Shie, 'An incremental learning approach to motion planning
with roadmap management,' Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 4, pp. 3411-3416, 2002.
[31] Y. Li, J. L. Fu, and N. S. Pollard, 'Data-driven grasp synthesis using shape
matching and task-based pruning,' IEEE Transactions on Visualization and
Computer Graphics, vol. 13, pp. 732-747, 2007.
[32] A. Liegeois, 'Automatic Supervisory Control of the Configuration and Behavior of
Multibody Mechanisms,' IEEE Transactions Systems, Man and Cybernetics, vol. 7,
pp. 868-871, 1977.
94
[33] M. Likhachev, G. Gordon, and S. Thrun, 'ARA*: Anytime A* Search with
Provable Bounds on Sub-Optimality,' Proceedings of Conference on Neural
Information Processing Systems (NIPS), 2003.
[34] N. A. Melchior and R. Simmons, 'Particle RRT for Path Planning with
Uncertainty,' IEEE International Conference on Robotics and Automation, pp.
1617-1624, 2007.
[35] A. T. Miller and P. K. Allen, 'Graspit: A versatile simulator for robotic grasping,'
IEEE Robotics and Automation Magazine, vol. 11, pp. 110-122, 2004.
[36] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, 'Automatic grasp
planning using shape primitives,' Proceedings of the IEEE International
Conference on Robotics and Automation, Taipei, Taiwan, vol. 2, pp. 1824-1829,
2003.
[37] Y. Nakamura and H. Hanafusa, 'Inverse Kinematics Solutions with Singularity
Robustness for Robot Manipulator Control,' ASME Journal of Dynamic Systems,
Measurement and Control, vol. 108, pp. 163-171, 1986.
[38] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.,
Pearson Education, 2003.
[39] A. Saxena, J. Driemeyer, and A. Y. Ng, 'Robotic grasping of novel objects using
vision,' International Journal of Robotics Research, vol. 27, pp. 157-173, 2008.
[40] M. Stilman and J. Kuffner, 'Planning among movable obstacles with artificial
constraints,' International Journal of Robotics Research, vol. 27, pp. 1295-1307,
2008.
[41] M. Stilman, K. Nishiwaki, S. Kagami, and J. J. Kuffner, 'Planning and executing
navigation among movable obstacles,' Advanced Robotics, vol. 21, pp. 1617-1634,
2007.
[42] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, 'Manipulation planning
among movable obstacles,' Proceedings of the IEEE International Conference on
Robotics and Automation, Rome, Italy, pp. 3327-3332, 2007.
[43] L. W. Tsai, The Mechanics of Serial and Parallel Manipulators, New York, John
Wiley & Sons, 1999.
[44] Y. C. Tsai, 'Motion Planning of a Dual-Arm Mobile Robot in Complex
Environments,' Master Thesis, Graduate Institute of Mechanical Engineering,
National Taiwan University, 2008.
95
[45] C. Urmson and R. Simmons, 'Approaches for heuristically biasing RRT growth,'
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 2, pp. 1178-1183, 2003.
[46] J. M. Vandeweghe, D. Ferguson, and S. Srinivasa, 'Randomized Path Planning for
Redundant Manipulators without Inverse Kinematics,' IEEE-RAS International
Conference on Humanoid Robots, 2007.
[47] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, 'MAPRM: a probabilistic roadmap
planner with sampling on the medial axis of the free space,' Proceedings of the
IEEE International Conference on Robotics and Automation, vol. 2, pp. 1024-1031,
1999.
[48] M. Xie, 'Fundamentals of Robotics: Linking Perception to Action,' Machine
Perception Artificial Intelligence: World Scientific, 2003.
[49] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle, 'Dynamic-Domain RRTs:
Efficient Exploration by Controlling the Sampling Domain,' Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 3856-3861, 2005.
[50] H. Zghal, R. V. Dubey, and J. A. Euler, 'Efficient gradient projection optimization
for manipulators with multiple degrees of redundancy,' Proceedings of the IEEE
International Conference on Robotics and Automation, vol. 2, pp. 1006-1011,
1990.
[51] Y. Zheng and W.-H. Qian, 'An enhanced ray-shooting approach to force-closure
problems,' Journal of Manufacturing Science and Engineering, Transactions of the
ASME, vol. 128, pp. 960-968, 2006.
[52] Y. Zheng and W.-H. Qian, 'Simplification of the ray-shooting based algorithm for
3-D force-closure test,' IEEE Transactions on Robotics, vol. 21, pp. 470-473,
2005.
[53] X. Zhu and J. Wang, 'Synthesis of force-closure grasps on 3-D objects based on
the Q distance,' IEEE Transactions on Robotics and Automation, vol. 19, pp.
669-679, 2003.
[54] wikipedia: Manhattan distance: http://en.wikipedia.org/wiki/Manhattan_distance
[55] NewMat C++ Matrix Class: http://ideas.repec.org/c/cod/ccplus/newmat.html
[56] NeHe Tutorials, OpenGL tutorials: http://nehe.gamedev.net/
[57] OpenGL official website: http://www.opengl.org/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43971-
dc.description.abstract本文主要的目的在設計與建立一個針對行動式機器人進行抓握任務的自主
導航系統,使其能在複雜的人類生活環境中運作。透過發展高維度的運動規劃演
算法,使機器人可以對物品進行抓取與操作。
在這篇論文中,我們首先針對一個給定的物體去計算出一組合適的抓握位
置。我們考慮了抓握的穩定性(force-closure)以及局部環境的空曠程度,並藉由評
量函式產生一些較合適的抓握位置及方向,作為抓握任務運動規劃的終點目標。
然後我們針對組態空間(configuration space)和目標空間(goal space)維度不同
的運動規劃問題,提出了BiRRT-GCS (Bi-directional RRT with Goal Configuration
Search)演算法,此演算法能使行動式機器人在已知的環境中往欲抓取的物體移
動,並且使用機械手臂與機械手成功完成任務而不需要逆運動學(inverse
kinematics)。BiRRT-GCS 演算法與現有的BiSpace 演算法相比,規劃的時間更短、
更有效率,在複雜的環境中速度可達五倍以上。而我們也將multi-goal 的概念加
進BiRRT-GCS 提出Multi-Goal BiRRT-GCS 演算法,這可使抓握任務的成功機會
更高。最後,實驗的部份以模擬與實作的方式來比較及驗證演算法的效果。
zh_TW
dc.description.abstractThe main objective of this thesis is to develop an autonomous navigation system
for a mobile manipulator for grasping tasks, which can operate in a complex
environment. A high-dimensional planning algorithm for a robot to grasp or
manipulate an object is developed. First, we generate a set of feasible grasps for a
given object. We consider a grasp’s stability (force-closure) and local environment
clearance to form a scoring function to generate feasible grasps that are the goals in
grasp planning.
Next, in order solve the planning problems that have different dimensions in the
configuration space and the goal space, we propose a BiRRT-GCS (Bi-directional
RRT with Goal Configuration Search) algorithm, which can make the robot move
toward the object and use its arm to reach the goal without using inverse kinematics in
a known environment. Moreover, the algorithm is more than five times faster than the
BiSpace algorithm in complex scenes. We also propose a Multi-Goal BiRRT-GCS
planner to increase the probability of success of a grasping task. The simulation
results and the real world experiment show that our algorithms can efficiently find a
trajectory of the robot to accomplish grasping tasks.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:34:39Z (GMT). No. of bitstreams: 1
ntu-98-R96522810-1.pdf: 4325057 bytes, checksum: 32eebb408b942a95cd3517585ec5feda (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝.............................................................................................................................. iii
摘要...............................................................................................................................iv
Abstract........................................................................................................................v
List of Tables............................................................................................................. viii
List of Figures..............................................................................................................ix
Chapter 1 Introduction..........................................................................................1
1.1 Motivation..................................................................................................1
1.2 Objectives and Contributions.....................................................................3
1.3 Thesis Organization ...................................................................................5
Chapter 2 Background Knowledge and Relevant Research ..............................7
2.1 Kinematics Analysis...................................................................................7
2.1.1 Forward Kinematics.......................................................................8
2.1.2 Inverse Kinematics.......................................................................10
2.1.3 Singularity Avoidance..................................................................11
2.1.4 Joint Limit Avoidance ..................................................................12
2.2 Force-Closure Analysis............................................................................14
2.2.1 Friction Cone ...............................................................................14
2.2.2 Force-Closure...............................................................................16
2.2.3 Force-closure Test Algorithm.......................................................18
2.3 Path Planning as a Search Problem..........................................................20
2.3.1 Basic Search Strategies ................................................................20
2.3.2 Heuristic Search ...........................................................................21
2.3.3 Bidirectional Search.....................................................................24
2.3.4 The Configuration Space .............................................................25
2.3.5 Distance Metric............................................................................26
2.4 Randomized Path Planning ......................................................................28
2.4.1 Probabilistic Roadmap .................................................................28
2.4.2 Rapidly-Exploring Random Tree.................................................29
Chapter 3 Feasible Grasps Generation ..............................................................31
3.1 Introduction..............................................................................................31
3.2 Grasps Sampling ......................................................................................32
3.2.1 Modeling......................................................................................32
3.2.2 Sampling in a Sphere Region.......................................................33
vii
3.3 Evaluation of the Grasps..........................................................................36
3.3.1 Force-Closure Score.....................................................................36
3.3.2 Local Environment Clearance Score ...........................................38
3.3.3 Scoring Function..........................................................................40
3.4 Summary ..................................................................................................42
Chapter 4 Grasp Planning with BiSpace ...........................................................44
4.1 Introduction..............................................................................................44
4.2 RRT Algorithm.........................................................................................46
4.2.1 Basic RRT planner .......................................................................46
4.2.2 Bi-directional RRT and RRT-Connect .........................................48
4.3 The BiSpace Algorithm............................................................................51
4.3.1 The Core Idea of BiSpace ............................................................51
4.3.2 Modification of the C-Space Distance Metric .............................54
4.4 Application to Grasp Planning.................................................................56
4.5 High-Potential Location Sampling ..........................................................59
Chapter 5 Grasp Planning with BiRRT-GCS....................................................62
5.1 The BiRRT-GCS Algorithm.....................................................................63
5.2 Application to Grasp Planning.................................................................68
5.3 Multi-Goal BiRRT-GCS ..........................................................................69
5.4 Summary ..................................................................................................72
Chapter 6 Implementation and Experimental Results.....................................73
6.1 Software Platform ....................................................................................73
6.2 Hardware Platform...................................................................................75
6.2.1 Humanoid Robot Arm..................................................................75
6.2.2 Control Modules ..........................................................................76
6.3 Experimental Results ...............................................................................77
6.3.1 “Common Grasping Task” Scenarios ..........................................77
6.3.2 “High-Constrained Grasping Task” Scenario ..............................79
6.3.3 Grasp Planning with Multi-Goal BiRRT-GCS.............................81
6.3.4 “Pick and Place Operations” Scenario.........................................83
6.3.5 “Point to the Ball” Scenario.........................................................85
Chapter 7 Conclusions and Future Work..........................................................87
7.1 Conclusions..............................................................................................87
7.2 Future Work .............................................................................................89
References...................................................................................................................91
dc.language.isoen
dc.subject機器人學zh_TW
dc.subject抓握規劃zh_TW
dc.subject抓握穩定zh_TW
dc.subject高維&#64001zh_TW
dc.subject運動規劃zh_TW
dc.subject動式機器人zh_TW
dc.subjectGrasp Stabilityen
dc.subjectRoboticsen
dc.subjectMobile Manipulatoren
dc.subjectHigh-Dimensional Motion Planningen
dc.subjectGrasp Planningen
dc.title行動式機器人在複雜環境之抓握任務運動規劃zh_TW
dc.titleMotion Planning of a Mobile Robotic Manipulator for Grasping Tasks in Complex Environmentsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王傑智(Chieh-Chih Wang),林沛群(Pei-Chun Lin)
dc.subject.keyword抓握規劃,抓握穩定,高維&#64001,運動規劃,行,動式機器人,機器人學,zh_TW
dc.subject.keywordGrasp Planning,Grasp Stability,High-Dimensional Motion Planning,Mobile Manipulator,Robotics,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2009-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved