Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43965
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明
dc.contributor.authorHsin-Hong Chiangen
dc.contributor.author江昕鴻zh_TW
dc.date.accessioned2021-06-15T02:34:25Z-
dc.date.available2014-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-14
dc.identifier.citation[1] Sarang Lakare. “3D Segmentation techniques for medical volumes”. http://www.cs.sunysb.edu/~mueller/teaching/cse616/sarangRPE.pdf
[2] Richard NC, Douglas LJ, William DO. “Detection of lines and boundaries in speckle images-application to medical ultrasound”. IEEE Transactions on Medical Imaging, vol. 18, no. 2, pp. 126-136 , February 1999
[3] Michael K, Andrew W, Demetri T. “Snakes: Active Contour Model”. International Journal of Computer Vision, vol. 1, no. 4, pp. 321-331,January 1988
[4] Laurent DC, Isaac C. “Finite element methods for active contour models and balloons for 2D and 3D images”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp.1131-1147, 1991
[5] Ravikanth M, James AS, Baba CV. “Shape modeling with front propagation: A level set approach”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158-176, 1995
[6] Nobuyuki O. “A threshold selection method from gray level histogram”. IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, 1979
[7] Rolf A, Leanne B. “Seeded region growing”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 6, June 1994
[8] Shiuh-Yung C, Wei-Chung L, Chin-Tu C. “Split-and-merge image segmentation based on localized feature analysis and statistical tests”. CVGIP, Graphical Models and Image Processing, vol. 53, no. 5, pp. 457-475, September 1991
[9] Z. W, R. L. “An optimal graph theoretic approach to data clustering: theory and its application to image segmentation”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, November 1993
[10] Jianbo S, Jitendra M. “Normalized cuts and image segmentation” .IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, August 2000
[11] Stella XY, Jianbo S. “Segmentation given partial grouping constraints”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp.173-183, February 2004
[12] Stella XY, Jianbo S. “Grouping with bias”. Neural Information Processing Systems, Vancouver, Canada, 2001
[13] Carsten R, Vladimir K, Andrew B. “ “GrabCut”-Interactive foreground extraction using iterated graph cut“. ACM Transactions on Graphics, vol. 23, no. 3, pp. 309-314
[14] Shao-Yu C, Herng-Hua C, Shuo-Hui H, Woei C. Chu. “Breast tumor identification in ultrasound images using the normalized cut with partial grouping constraints”. International Conference on Bio-Medical Engineering and Informatics, vol. 2, pp.28-32, May 2008
[15] Neculai Archip, Robert Rohling, Peter Cooperberg and Hamid Tahmasebpour. “Ultrasound Image Segmentation Using Spectral Clustering”. Ultrasound in Medicine and Biology., vol. 31, no. 11, pp. 1485–1497, 2005
[16] 張書瑋,陳中明。“Level set method with cell structure and graph partition prior for segmentation of sonographic breast lesions”.台大醫工所95學年度碩士論文, 95
[17] Yuri B, Marie-Pierre J. “Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images”. Internation Conference on Computer Vision, Vancouver, Canada, July 2001
[18] Daniel F, Tao Z. “Interactive graph cut based segmentation with shape priors”. IEEE Computer Society Conference, Computer Vision and Pattern Recognition, vol. 1, pp.755-762, June 2005
[19] Yuri B, Marie-Pierre J. “Interactive organ segmentation using graph cuts”. Medical Image Computing and Computer Assisted Intervention, pp.276-286, 2000
[20] Xiaoyu W, Yangsheng W. “Interactive foreground/background segmentation based on graph cut”. Congress on Image and Signal Processing, 2008
[21] Felzenszwalb PF, Huttenlocher DF. “Image segmentation using local variation”. IEEE Computer Vision and Pattern Recognition, pp.98-104, June 1998
[22] Ali R, Ben R. “A feature space view of spectral clustering”. http://www.ist.caltech.edu/~brecht/papers/04.rah.rec.ncut.pdf
[23] Ali R, Ben R. “Clustering with normalized cut is clustering with a hyperplane”. Statistical Learning in Computer Vision, 2004
[24] CM Chen, YH Chou, CS Chen, JZ Cheng, YF Ou, FC Yeh, KW Chen. “Cell-competition algorithm: a new segmentation algorithm for multiple     objects with irregular boundaries in ultrasound images”. Ultrasound in Medicine and Biology, vol. 31, no. 12, pp. 1647–1664, 2005
[25] 李健豪,陳中明。“Prior embedded three-dimensional cell competition algorithm for atherosclerotic coronary segmentation and analysis in multi-slice computed tomography”. 台大醫工所96學年度碩士論文, 96
[26] L. Vincent, P. Soille . “Watersheds in digital spaces an efficient algorithm based on immersion simulation”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, June 1991
[27] Gauch JM. “Image segmentation and analysis via multi-scale gradient watershed hierarchies”. IEEE transactions on image processing, vol. 8, no.1, pp. 69-79, 1999
[28] Song W, Jeffrey MS. ”Image segmentation with ratio cut”. IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 25, no. 6, pp. 675-690, June 2003
[29] Jianbo S, Serge B, Thomas L, Jitendra M. “Image and video segmentation-the normalized cut framework”. IEEE International Conference on Image Processing, vol.1, pp. 943-947, October 1998
[30] Jianbo Si, Jitendra M. “Motion segmentation and tracking using normalized cuts” Computer Vision, 1998. Sixth International Conference, pp. 1154-1160, January 1998
[31] Vladimir K, Ramin Z. “What energy function can be minimized via graph cut”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147-159, February 2004
[32] Yuri B, Olga V, Ramin Z. “Fast approximate energy minimization via graph cuts”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, November 2001
[33] Sharat C, Satwik H, Vishal M, Abhineet S. “Improve cut-Based foreground identification”.
http://www.cse.iitb.ac.in/~sharat/papers/foreground.pdf
[34] Sharat C, Kamlesh KM. “A fast segmentation algorithm revisited”. Indian Conference on Computer Vision, Graphics, and Image Processing, pp.496-501, 2002
[35] Stella XY, Jianbo S. “Multiclass spectral clustering”. International Conference on Computer Vision, pp. 313-319, 2003
[36] Jitendra M, Serge B, Thomas L, Jianbo S. “Contour and texture analysis for image segmentation”. International Journal of Computer Vision, vol. 43, no. 1, pp. 7–27, 2001
[37] Jean S, Etienne D. “Region merging via graph cuts”. Image Analysis and Stereology , March 2008
[38] Qi D, Elsa A, Ting S, Andrew L. “Fast interpolation algorithms for real-time three dimensional cardiac ultrasound”. Proceedings of the 25th Annual International Conference of the IEEE, vol. 2, pp. 1192-1195 ,September 2003
[39] Qi D, Elsa A, Andrew L. “Assessment of visual quality and spatial accuracy of fast anisotropic diffusion and scan conversion algorithms for real-time three-dimensional spherical ultrasound”. Medical Imaging 2004: Ultrasonic Imaging and Signal Processing, proceedings of the SPIE, vol. 5373, pp. 331-342, 2004
[40] Ruey-Feng C, Wen-Jie W, WuDar-Ren C, Woo-Yung M. “3-D snake for US in margin evaluation for malignant breast tumor excision using mammotome”. IEEE Transactions on Information Technology in Biomedicine, vol. 7, no. 3, September 2003
[41] Vikram C, David T, David R, Yongmin K. “A multiple active contour model for cardiac boundary detection on echocardiographic sequences”. IEEE Transactions on Medical Imaging, vol. 15, no. 3, June 1996
[42] PP, WF. “A factorization approach to grouping”. European Conference on Computer Vision, pp. 655-670, 1998
[43] A. Tsai, W. Wells, C. Tempany, E. Grimson, A. Willsky. “Coupled multi-shape model and mutual information for medical image segmentation”. Medical Image Analysis, vol. 8, no. 4, pp. 429-445, December 2004
[44] Junmo K, John WF III, Anthony Y Jr. , Mujdat C, Alan SW. “Nonparametric methods for image segmentation using information theory and curve evolution”. Image Processing”.Proceeding of the 2002 IEEE International Conference on Image Processing, vol. 3, pp. 797- 800, September 2002
[45] Chenyang X, Jerry LP. ”Snakes, shapes, and gradient vector flow.” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 359-369, March 1998
[46] Song-Chun Z, Alab Y. “Region competition: unifying snakes,region growing,and Bayes/MDL for multiband Image Segmentation”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18,no. 9, pp. 884-900, September 1996
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43965-
dc.description.abstract在乳房超音波影像上,腫瘤的圈選不但費時耗力並且需要具有相當經驗之醫師或專業人員來進行,三維乳房超音波影像上進行腫瘤的圈選難度更高程序更繁複。因此藉由電腦輔助系統進行乳房超音波影像的腫瘤圈選不僅可以簡化醫師圈選的工作爭取寶貴的治療時間,更可以藉由此系統所提供之腫瘤邊界資訊使診斷更準確。
以圖形理論進行醫學影像之分割已被廣泛的發展應用,在醫學影像上更普遍應用在各種影像格式上如超音波影像,X光影像及核磁共正影像等。但其龐大的計算空間及冗長的計算時間在實務上卻會衍生出許多問題。使用區域作為圖形之節點為解決此問題的方法之一。因此本研究希望藉由在超音波影像中可以產生良好區域結構的區域單元競爭演算法所作為產生區域的方法。將所產生的區域單元視為節點使用Graph Cut對圖形進行劃分。一個良好的以區域為節點的圖形劃分方法除了需要具有良好區域結構及劃分方法外,相似權重函數也扮演著核心要角。因此本研究設計一相似權重函數可藉由預估腫瘤的統計資訊來避免發生超音波影像上灰階值變化平緩的弱邊界及Graph Cut劃分出較獨立點的問題。以區域單元競爭演算法及Graph Cut的搭配作為以區域為節點的圖形劃分方法除了可以節省計算時間及空間外在三維影像上更可以直接應用,因此本文中展示了在三維影像上的應用及部分研究成果,此外也使用二維影像評斷本研究方法之優劣並展現幾個二維影像的範例。
最後本研究使用之影像係由台北榮民總醫院所提供的160張二維乳房超音波影像其中包括60張惡性腫瘤及100張的良性腫瘤,評斷本研究之方法所圈選之邊界與手繪邊界的相似程度。在三維乳房超音波影像上則使用台大醫院所提供本之影像進行影像分割研究,並且展示分割結果。
zh_TW
dc.description.abstractIn sonographic breast lesions image, circling the lesion part is the complicated and time consuming work, moreover it should be done by experienced doctors or experts. In three dimensional sonographic breast lesions image, circling the lesion part becomes more complicated and more procedure. Therefore, circling the lesion part by computer aided diagnosis(CAD) is not only simplified the circling work and saving the doctor’s precious time, but also providing more medical information by computer.
Segmenting the medical image by graph theory has been used and developed in couple of years. It is general used in various kinds of medical image format such that ultrasound image, X-ray, MRI and etc. In implementation, it derived lots of problem cause of enormous computation space and long computation time. Using region based method is one of solving method. Our research use Cell Competition Algorithm as producing region structure, because it has good result in ultrasound image. After producing the regions, we use Graph Cut to divide the region based graph. A good dividing approach in region based graph theory must have a good method in producing the regions and a good approach in dividing the graph, in addition to the similar weight function also plays an important role. Therefore our research designs a good similar weight function which can be used to prevent the weak edge problem and the problem of prefer cutting the isolated node in Graph Cut according the estimating statistical information of tumor. Another advantage in our research is that it can intuitively implement in three dimensional images.
Last part of this paper shows the experiment result, compares with the handmade boundary and evaluates our boundary result. The experiment 2D and 3D sonographic breast lesions images are provided by National Taiwan University Hospital and Taipei Veterans General Hospital.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:34:25Z (GMT). No. of bitstreams: 1
ntu-98-R96548014-1.pdf: 3565727 bytes, checksum: e048454bc8b17aae06a939a3bbb7c80c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 1
Abstract 3
目錄 5
第一章 緒論 9
1.1前言 9
1.2研究動機 10
1.3研究目的 11
1.4論文架構 12
1.5資料來源 12
第二章 文獻探討 13
2.1以目標物結構進行分割 13
2.2以根據統據資訊進行分割 15
2.3以眾合目標物結構及統計資訊進行分割 17
2.4以單元結構進行分割 19
2.5以圖形概念進行分割 20
第三章 區域單元競爭演算法 22
3.1前處理步驟(Preprocessing Stage) 22
3.2區域單元產生步驟(Cell Generation Stage) 24
3.3單元競爭步驟(Cell based Deformation and Competition Stage) 25
3.4再初使化步驟(Re-initialization Stage) 32
第四章 以圖形概念進行劃分之方法 34
4.1 Normalized Cut 35
4.2 Graph Cut 37
4.3 Normalized Cut與Graph Cut在超音波影像之探討 42
第五章 以區域單元為節點之Graph Cut 46
5.1以區域單元為節點之Graph Cut 46
5.2相似權重函數設計 47
5.3以區域單元為節點之Graph Cut進行三維影像分割 58
第六章 實驗結果 61
6.1評斷方法介紹 61
6.2二維乳房超音波影像分割結果 62
6.3三維乳房超音波影像分割結果 81
第七章 結論與未來發展 85
參考文獻 87
dc.language.isozh-TW
dc.subject超音波影像zh_TW
dc.subject以區域為基底之圖形理論zh_TW
dc.subject圖形切割演算法zh_TW
dc.subject區域單元競爭演算法zh_TW
dc.subject影像分割zh_TW
dc.subjectCell Competitionen
dc.subjectImage Segmentationen
dc.subjectGraph Cuten
dc.subjectRegion Based Graph Theoryen
dc.subjectUltrasound Imageen
dc.title以區域單元為基礎之二維/三維乳房超音波影像圖形切割演算法zh_TW
dc.titleCell-Based Graph Cut for Segmentation of 2D/3D Sonographic Breast Imagesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹寶珠,張允中
dc.subject.keyword超音波影像,影像分割,區域單元競爭演算法,圖形切割演算法,以區域為基底之圖形理論,zh_TW
dc.subject.keywordUltrasound Image,Image Segmentation,Cell Competition,Graph Cut,Region Based Graph Theory,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2009-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved