請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43950完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Ching-Ying Chen | en |
| dc.contributor.author | 陳菁瑛 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:33:52Z | - |
| dc.date.available | 2009-08-14 | |
| dc.date.copyright | 2009-08-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | Reference
1. Lim, J. W., Isshiki, M., Journal of Applied Physics, 99, -, (2006) 2. Zhang, W., Brongersma, S. H., Li, Z., Li, D., Richard, O., Maex, K., Journal of Applied Physics, 101, -, (2007) 3. S. TSUKIMOTO, T. KABE, K. ITO, M. MURAKAMI, Journal of ELECTRONIC MATERIALS, 36, 3, (2007) 4. J.J.Thomson, Proceedings of the Cambridge Philosophical Society, 11, 120-123, (1901) 5. Shimada, M., Moriyama, M., Ito, K., Tsukimoto, S., Murakami, M., Journal of Vacuum Science & Technology B, 24, 190-194, (2006) 6. A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382, (1970) 7. K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100, (1938) 8. E. H. Sondheimer, Adv. Phys. 1, 1, (1952) 9. T.S.Kuan, C.K.Inoki, G.S. Oehrlein, K.Rose, Y.-P.Zhao, G.-C. Wang, S.M.Rossnagel, C.Cabral, Mater. Res.SOC.Symp.Proc.612, D7.1.1, (2000) 10. Rossnagel, S. M., Kuan, T. S., Journal of Vacuum Science & Technology B, 22, 240-247, (2004) 11. Chang, S. C., Shieh, J. M., Dai, B. T., Feng, M. S., Electrochemical and Solid State Letters, 5, C67-C70, (2002) 12. T. Vanypre, M. Cordeau, T. Mourier, W.F.A. Besling, J-C. Dupuy, J. Torres, Microelectronic Engineering, 83, 2373–2376, (2006) 13. J. S. Chawla and D. Gall, APPLIED PHYSICS LETTERS 94, 252101, (2009) 14. J.M.E.Harper,C.Cabral,Jr., P.C.Andricacos, L. Gignac,I.C.Noyan,K.P.Rodbell,C.K.Hu, J.Appl.Phys.86, 2516, (1999) 15. Sun, T., Yao, B., Warren, A. P., Kumar, V., Roberts, S., Barmak, K., Coffey, K. R., Journal of Vacuum Science & Technology A, 26, 605-609, (2008) 16. Sun, T., Yao, B., Warren, A. P., Kumar, V., Roberts, S., Barmak, K., Coffey, K. R., Journal of Vacuum Science & Technology A, 26, 605-609, (2008) 17. W. Steinhogl, G. Schindler, G. Steinlesberger, and M. Engelhardt, Phys. Rev. B 66, 075414, (2002) 18. H. Marom, J. Mullin, and M. Eizenberg, Phys. Rev. B 74, 045411, (2006) 19. W. Wu, S. H. Brongersma, M. Van Hove, and K. Maex, Appl. Phys. Lett. 84, 2838, (2004) 20. Kim, C.U., ”Report on resistivity reduction and reliability failure mechanisms in narrow damascene Cu lines in low-k dielectrics (part 1)”,ISMT Confidential/U.T. Sensitive,(2002) 21. R. B. Dingle, Proc. Roy. Soc. London A201, 545,(1950). 22. Lovell, A. C. B. Proc. Roy. Soc. London, A157, 311,(1936). 23. Utsumi, K., Matsunaga, O., Takahata, T., Thin Solid Films, 334, 30-34, (1998) 24. Gau, W. C., Chang, T. C., Lin, Y. S., Hu, J. C., Chen, L. J., Chang, C. Y., Cheng, C. L., Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 18, 2597-2597, (2000) 25. A. R. Sethuraman, J.-F. Wang, and L. M. Cook, J. Electron. Mater. 25,1617, (1996) 26. D. C. Edelstein, Proc. Of VMIC, June, p. 301, (1995). 27. P. Singer, Semicond. Int. 91, (1998) 28. S. P. Muraka and S. W. Hymes, Crit. Rev. Solid State Mater. Sci. 20, 87, (1995) 29. V. M. Dubin, C. H. Ting, and R. Cheung, Proc. Of 14th VMIC Conference, p. 69, (1997). 30. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2nd ed., John Wiley & Sons, New York, pp. 1-56, (1986). 31. Shyam P. Murarka and Steven W. Hymes, Critical Reviews in Solid State and Materials Science, 20 (2), pp. 87-124, (1995). 32. H. Ono, T. Nakano, and T. Ohta, Appl. Phys. Lett., 64 (12), pp. 1511-1513, (1994). 33. Changsup Ryu, Haebum Lee, Kee-Won Kwon, Alvin L. S. Loke, and S. Simon Wong, Solid State Technology, 42 (4), pp. 53-56, (1999). 34. H. Ono, T. Nakano, and T. Ohta, Appl. Phys. Lett., 64 (12), pp. 1511-1513, (1994). 35. Q. T. Jiang, Rick Faust, Hieu Robbie Lam, and Jay Muchda, Proceedings of the International Interconnect Technology Conference, pp. 125-127, (1999). 36. M. H. Tsai and S. C. Sun, J. Appl. Phys., 79 (9), pp. 6932-6938, (1996). 37. Li, Z. W., Rahtu, A., Gordon, R. G., Journal of the Electrochemical Society, 153, C787-C794,( 2006) 38. Prater, W. L., Allen, E. L., Lee, W. Y., Toney, M. F., Daniels, J., Hedstrom, J. A., Applied Physics Letters, 84, 2518-2520, (2004) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43950 | - |
| dc.description.abstract | 摘要
當電子元件尺寸縮小,銅薄膜的厚度至一百奈米以下,電阻率隨厚度降低而攀升的趨勢漸趨顯著,此稱為「尺寸效應」。本論文著重討論影響「尺寸效應」的主要兩大因素:表面散射效應及晶體邊界散射效應。論文實驗的第一部份試圖將表示表面散射效應及晶體邊界散射效應的理論連結,將此二效應合併參數後可更容易討論結構與其內部電子的物理性質改變關係。 第二部分再分別比較不同材料或不同製程方式的阻抗層,對於銅薄膜的電阻率及晶體結構影響關係,最後量測試片在低溫下及退火後的電阻率及晶體結構表現,期望可以找到降低尺寸效應的方式,改善元件的效能。 | zh_TW |
| dc.description.abstract | Abstract
As the scale of Cu interconnects reduces to sub-100nm, the drastic resistivity increases result from the decrease of Cu thickness, which is called “size effect”. This thesis focuses on the two major factors of “size effect”- surface scattering and grain boundary scattering. The first part of the research attempts to corelate the theory of surface scattering with the theory of grain boundary scattering. By combining parameters of the two scattering effects, we can probe into the relation between the change of film structures and physical meaning of internal electrons more reliable. The second part of the research compares resistivity and microstructure of Cu thin films with barrier layers, which is made by different materials or different processes. Finally, resistivity and grain size of the samples are measured at low temperature as well as after annealing, in hopes of reducing the Cu resistivity increase and improving the integrated-circuit efficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:33:52Z (GMT). No. of bitstreams: 1 ntu-98-R96941088-1.pdf: 1109395 bytes, checksum: d63953bcb2bb6fb7880311e7ebf79c79 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
第一章 介紹 1 1.1 :動機 1 第二章 材料與實驗裝置 4 2.1 :材料介紹:銅、鉭、氮化鉭 4 2.2 :製程方法 8 2.3 :實驗用儀器 12 第三章 近似古典理論, F.S. Model理論 and M.S. Model理論 19 3.1 :近似古典模型理論推導 19 3.2 :F.S. Model理論推導 21 3.3 :M.S. Model理論推導 30 第四章 實驗結果及討論 35 4.1 :實驗方法 35 4.2 :實驗與古典近似理論比較 38 4.3 :F.S. Model與實驗結 41 4.4 :F.S.- M.S. Model與實驗結果比較 45 4.5 :F.S.Model理論與F.S.-M.S.Model理論比較 50 4.6 :退火後實驗量測結果 51 4.7 :低溫量測實驗結果 60 第五章 結論及未來的實驗方向 64 Reference 66 圖目錄 圖2-1 元件結構示意圖 4 圖2-2 物理氣相沉積法示意圖 10 圖2-3 原子層沈積法示意圖 11 圖2-4 四點探針量測薄膜導體示意圖 13 圖2-5 由Labtracer得出銅的I-V曲線 13 圖2-6 穿透式電子顯微鏡機台外觀 14 圖2-7 穿透式電子顯微鏡結構示意圖 15 圖2-8 Cu/Ta/Si結構圖 15 圖2-9 X光繞射儀機台 17 圖2-10 室溫及不同退火溫度下銅薄膜的XRD分析圖 17 圖3-1 銅薄膜的示意圖 20 圖3-2 薄膜中的座標圖 22 圖3-3 晶粒邊界假設示意圖 30 圖4-1 各不同阻抗層試片畫出的電阻率對銅薄膜厚度的曲線圖 36 圖4-2 物理氣相沉積-鉭阻抗層的銅薄膜與古典近似理論比較 38 圖4-3 物理氣相沉積-氮化鉭阻抗層的銅薄膜與古典近似理論比較 39 圖4-4 原子沉積-氮化鉭阻抗層的銅薄膜與古典近似理論比較 40 圖4-5 物理氣相沉積-鉭阻抗層的銅薄膜與F.S. Model理論比較 41 圖4-6 物理氣相沉積-氮化鉭阻抗層的銅薄膜與F.S. Model理論比較 42 圖4-7 原子沉積法-氮化鉭阻抗層的銅薄膜與F.S. Model理論比較 43 圖4-8古典近似理論、F.S. Model理論與近似F.S. Model理論 44 圖4-9(a) 原子沉積法-氮化鉭阻抗層之銅薄膜-曲線 46 圖4-9(b) 物理沉積法-氮化鉭阻抗層之銅薄膜-曲線 46 圖4-9(c) 物理沉積法-鉭阻抗層之銅薄膜-曲線 47 圖4-10(a) 室溫與不同退火溫度下物理沉積法-氮化鉭電阻率與銅薄膜厚度的關係圖 54 圖4-10(b) 室溫與不同退火溫度下物理沉積法-鉭電阻率與銅薄膜厚度的關係圖 54 圖4-10(c) 室溫與不同退火溫度下原子沉積法-氮化鉭電阻率與銅薄膜厚度的關係圖 55 圖4-11(a) 室溫下物理沉積法-氮化鉭阻抗層之銅薄膜與電阻率的上升關係 56 圖4-11(b) 退火300℃下物理沉積法-氮化鉭阻抗層之銅薄膜與電阻率的上升關係 56 圖4-11(c) 退火400℃下物理沉積法-氮化鉭阻抗層之銅薄膜與電阻率的上升關係 57 圖4-12(a) 退火300℃下原子沉積法-氮化鉭阻抗層之銅薄膜 57 圖4-12(b) 退火400℃下原子沉積法-氮化鉭阻抗層之銅薄膜 58 圖4-13(a) 退火300℃下物理沉積法-鉭阻抗層之銅薄膜 58 圖4-13(b) 退火400℃下物理沉積法-鉭阻抗層之銅薄膜 59 圖:4-14(a) 室溫與低溫(77k)下,原子沉積-氮化鉭阻抗層之銅薄膜與電阻率的上升關係 61 圖:4-14(b) 室溫與低溫(77k)下,物理沉積-氮化鉭阻抗層之銅薄膜與電阻率的上升關係 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 銅電阻率變化 | zh_TW |
| dc.subject | 銅電阻率 | zh_TW |
| dc.subject | 銅薄膜 | zh_TW |
| dc.subject | Cu thin films | en |
| dc.subject | thin film | en |
| dc.title | 奈米銅薄膜的電阻率變化 | zh_TW |
| dc.title | Resistivity Scaling in nano-scale Cu Thin Films | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),吳育任(Yuh-Renn Wu) | |
| dc.subject.keyword | 銅薄膜,銅電阻率,銅電阻率變化, | zh_TW |
| dc.subject.keyword | Cu thin films,thin film, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
