請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43928完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑萍(Shwu-Bin Lin) | |
| dc.contributor.author | Yi-Ju Li | en |
| dc.contributor.author | 李意如 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:33:05Z | - |
| dc.date.available | 2009-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2000) Molecular Biology of THE CELL 4th edition
Aoyagi, Y., Suzuki, Y., Igarashi, K., Yokota, T., Mori, S., Suda, T., Naitoh, A., Isemura, M., and Asakura, H. (1993) Highly enhanced fucosylation of alpha-fetoprotein in patients with germ cell tumor. Cancer. 72, 615-618 Bump, E. A., Malaker, K., (1997) Radioprotectors: The mechanisms of radiation protection by non-protein sulfhydryls: glutathione, cysteine, cysteamine, pp25-52, CRC press Baruchel, S., Bernstein, M., Whitehead, V. M., Devine, S., Bell, B., Dubowy, R., Grier, H., Kretschmar, C., Langevin, A. M., and Vietti, T. (1995) A phase I study of acivicin in refractory pediatric solid tumors. A Pediatric Oncology Group study. Invest New Drugs. 13, 211-216 Chikhi, N., Holic, N., Guellaen, G., and Laperche, Y. (1999) Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comp Biochem. Physiol B Biochem. Mol. Biol. 122, 367-380 Comunale, M. A., Lowman, M., Long, R. E., Krakover, J., Philip, R., Seeholzer, S., Evans, A. A., Hann, H. W., Block, T. M., and Mehta, A. S. (2006) Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J. Proteome. Res. 5, 308-315 Curthoys, N. P. (1983) Role of gamma-glutamyltranspeptidase in the renal metabolism of glutathione. Miner. Electrolyte Metab. 9, 236-245 Daubeuf, S., Accaoui, M. J., Pettersen, I., Huseby, N. E., Visvikis, A., and Galteau, M. M. (2001) Differential regulation of gamma-glutamyltransferase mRNAs in four human tumour cell lines. Biochim. Biophys. Acta. 1568, 67-73 Daubeuf, S., Balin, D., Leroy, P., and Visvikis, A. (2003) Different mechanisms for gamma-glutamyltransferase-dependent resistance to carboplatin and cisplatin. Biochem. Pharmacol. 66, 595-604 Daubeuf, S., Leroy, P., Paolicchi, A., Pompella, A., Wellman, M., Galteau, M. M., and Visvikis, A. (2002) Enhanced resistance of HeLa cells to cisplatin by overexpression of gamma-glutamyltransferase. Biochem. Pharmacol. 64, 207-216 DeCaprio, A. P. (1999) The toxicology of hydroquinone--relevance to occupational and environmental exposure. Crit Rev. Toxicol. 29, 283-330 Diederich, M., Wellman, M., Visvikis, A., Puga, A., and Siest, G. (1993) The 5' untranslated region of the human gamma-glutamyl transferase mRNA contains a tissue-specific active translational enhancer. FEBS Lett. 332, 88-92 Forman, H. J., Shi, M. M., Iwamoto, T., Liu, R. M., and Robison, T. W. (1995) Measurement of gamma-glutamyl transpeptidase and gamma-glutamylcysteine synthetase activities in cells. Methods Enzymol. 252:66-71., 66-71 Franzini, M., Corti, A., Lorenzini, E., Paolicchi, A., Pompella, A., De, C. M., Perego, P., Gatti, L., Leone, R., Apostoli, P., and Zunino, F. (2006) Modulation of cell growth and cisplatin sensitivity by membrane gamma-glutamyltransferase in melanoma cells. Eur. J. Cancer. 42, 2623-2630 Goldberg, D. M. (1980) Structural, functional, and clinical aspects of gamma-glutamyltransferase. CRC Crit Rev. Clin. Lab Sci. 12, 1-58 Han, L., Hiratake, J., Kamiyama, A., and Sakata, K. (2007) Design, synthesis, and evaluation of gamma-phosphono diester analogues of glutamate as highly potent inhibitors and active site probes of gamma-glutamyl transpeptidase. Biochemistry. 46, 1432-1447 Hanigan, M. H., Gallagher, B. C., Townsend, D. M., and Gabarra, V. (1999) Gamma-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis. 20, 553-559 Harding, C. O., Williams, P., Wagner, E., Chang, D. S., Wild, K., Colwell, R. E., and Wolff, J. A. (1997) Mice with genetic gamma-glutamyl transpeptidase deficiency exhibit glutathionuria, severe growth failure, reduced life spans, and infertility. J. Biol. Chem. 272, 12560-12567 Heisterkamp, N., Groffen, J., Warburton, D., and Sneddon, T. P. (2008) The human gamma-glutamyltransferase gene family. Hum. Genet. 123, 321-332 Huseby, N. E., and Eide, T. J. (1985) Variant gamma-glutamyltransferase in colorectal carcinoma and liver metastasis. A case study. Clin. Biochem. 18, 217-219 Ishikawa, T. (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 17, 463-468 Ikeda, Y., and Taniguchi, N., (2000) Current protocol in Toxicology, unit 6.6 Jeng, K. S., Sheen, I. S., and Tsai, Y. C. (2001) Gamma-glutamyl transpeptidase messenger RNA may serve as a diagnostic aid in hepatocellular carcinoma. Br. J. Surg. 88, 986-987 Kwiecien, I., Rokita, H., Lorenc-Koci, E., Sokolowska, M., and Wlodek, L. (2007) The effect of modulation of gamma-glutamyl transpeptidase and nitric oxide synthase activity on GSH homeostasis in HepG2 cells. Fundam. Clin. Pharmacol. 21, 95-103 Mares, V., Lisa, V., Malik, R., Kozakova, H., and Sedo, A. (2003) Cisplatin induced gamma-glutamyltransferase up-regulation, hypertrophy and differentiation in astrocytic glioma cells in culture. Histol. Histopathol. 18, 687-693 Meister, A., and Anderson, M. E. (1983) Glutathione. Annu. Rev. Biochem. 52:711-60., 711-760 Nemesanszky, E., and Lott, J. A. (1985) Gamma-glutamyltransferase and its isoenzymes: progress and problems. Clin. Chem. 31, 797-803 Norton, P. A., Comunale, M. A., Krakover, J., Rodemich, L., Pirog, N., D'Amelio, A., Philip, R., Mehta, A. S., and Block, T. M. (2008) N-linked glycosylation of the liver cancer biomarker GP73. J. Cell Biochem. 104, 136-149 Oka, H., Saito, A., Ito, K., Kumada, T., Satomura, S., Kasugai, H., Osaki, Y., Seki, T., Kudo, M., and Tanaka, M. (2001) Multicenter prospective analysis of newly diagnosed hepatocellular carcinoma with respect to the percentage of Lens culinaris agglutinin-reactive alpha-fetoprotein. J. Gastroenterol. Hepatol. 16, 1378-1383 Pawlak, A., Cohen, E. H., Octave, J. N., Schweickhardt, R., Wu, S. J., Bulle, F., Chikhi, N., Baik, J. H., Siegrist, S., and Guellaen, G. (1990) An alternatively processed mRNA specific for gamma-glutamyl transpeptidase in human tissues. J. Biol. Chem. 265, 3256-3262 Pendyala, L., Velagapudi, S., Toth, K., Zdanowicz, J., Glaves, D., Slocum, H., Perez, R., Huben, R., Creaven, P. J., and Raghavan, D. (1997) Translational studies of glutathione in bladder cancer cell lines and human specimens. Clin. Cancer Res. 3, 793-798 Pettersen, I., Andersen, J. H., Bjornland, K., Mathisen, O., Bremnes, R., Wellman, M., Visvikis, A., and Huseby, N. E. (2003) Heterogeneity in gamma-glutamyltransferase mRNA expression and glycan structures. Search for tumor-specific variants in human liver metastases and colon carcinoma cells. Biochim. Biophys. Acta. 1648, 210-218 Rodes, J., and Benhamon, J. P., (2007) Textbook of hepatology: from basic science to clinical practice, Wiley-Blackwell press. Ruoso, P., and Hedley, D. W. (2004) Inhibition of gamma-glutamyl transpeptidase activity decreases intracellular cysteine levels in cervical carcinoma. Cancer Chemother. Pharmacol. 54, 49-56 Sacchetti, L., Castaldo, G., and Salvatore, F. (1988) The gamma-glutamyltransferase isoenzyme pattern in serum as a signal discriminating between hepatobiliary diseases, including neoplasias. Clin. Chem. 34, 352-355 Sacchetti, L., Castaldo, G., and Salvatore, F. (1989) Electrophoretic behavior and partial characterization of disease-associated serum forms of gamma-glutamyltransferase. Electrophoresis. 10, 619-627 Sacchetti, L., Castaldo, G., Fortunato, G., and Salvatore, F. (1988) Improved procedure for measuring gamma-glutamyltransferase isoenzymes in serum. Clin. Chem. 34, 419-422 Sawabu, N., Nakagen, M., Ozaki, K., Wakabayashi, T., Toya, D., Hattori, N., and Ishii, M. (1983) Clinical evaluation of specific gamma-GTP isoenzyme in patients with hepatocellular carcinoma. Cancer. 51, 327-331 Smith, T. K., Ikeda, Y., Fujii, J., Taniguchi, N., and Meister, A. (1995) Different sites of acivicin binding and inactivation of gamma-glutamyl transpeptidases. Proc. Natl. Acad. Sci. U. S. A. 92, 2360-2364 Taketa, K., Endo, Y., Sekiya, C., Tanikawa, K., Koji, T., Taga, H., Satomura, S., Matsuura, S., Kawai, T., and Hirai, H. (1993) A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res. 53, 5419-5423 Tate, S. S., and Meister, A. (1981) gamma-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol. Cell Biochem. 39:357-68., 357-368 Tsutsumi, M., Sakamuro, D., Takada, A., Zang, S. C., Furukawa, T., and Taniguchi, N. (1996) Detection of a unique gamma-glutamyl transpeptidase messenger RNA species closely related to the development of hepatocellular carcinoma in humans: a new candidate for early diagnosis of hepatocellular carcinoma. Hepatology. 23, 1093-1097 Van, D. S., Van, S. A., and Hoogmartens, J. (2002) Kinetic study of gamma-glutamyltransferase activity by electrophoretically mediated microanalysis combined with micellar electrokinetic capillary chromatography. Electrophoresis. 23, 2854-2859 Visvikis, A., Pawlak, A., Accaoui, M. J., Ichino, K., Leh, H., Guellaen, G., and Wellman, M. (2001) Structure of the 5' sequences of the human gamma-glutamyltransferase gene. Eur. J. Biochem. 268, 317-325 Wenham, P. R., Price, C. P., and Sammons, H. G. (1978) A short review of techniques for the localisation of gamma-glutamyl transferase isoenzymes after electrophoresis. Ann. Clin. Biochem. 15, 146-150 Yamamoto, H., Sumikawa, K., Hada, T., Higashino, K., and Yamamura, Y. (1981) gamma-Glutamyltransferase from human hepatoma tissue in comparison with normal liver enzyme. Clin. Chim. Acta. 111, 229-237 Yao, D. F., Dong, Z. Z., and Yao, M. (2007) Specific molecular markers in hepatocellular carcinoma. Hepatobiliary. Pancreat. Dis. Int. 6, 241-247 Yao, D. F., Huang, Z. W., Chen, S. Z., Huang, J. F., Lu, J. X., Xiao, M. B., and Meng, X. Y. (1998) Diagnosis of hepatocellular carcinoma by quantitative detection of hepatoma-specific bands of serum gamma-glutamyltransferase. Am. J. Clin. Pathol. 110, 743-749 Zhang, H., Forman, H. J., and Choi, J. (2005) Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol. 401:468-83., 468-483 Zinkin, N. T., Grall, F., Bhaskar, K., Otu, H. H., Spentzos, D., Kalmowitz, B., Wells, M., Guerrero, M., Asara, J. M., Libermann, T. A., and Afdhal, N. H. (2008) Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease. Clin. Cancer Res. 14, 470-477 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43928 | - |
| dc.description.abstract | γ-麩胺醯轉移酶 (GGT)為一細胞膜結合的醣蛋白,主要功能是分解細胞外的glutathione (GSH)生成半胱胺酸,半胱胺酸可以進入細胞內作為合成GSH的原料。當肝細胞發生損傷時,GGT被釋出造成血液中GGT活性的上升,臨床上是阻塞性黃疸或膽汁鬱積的診斷標記。
本論文的第一部份是有關GGT作為輔助肝癌診斷血清標記的探討。由於肝癌的臨床血清學檢驗是依靠甲型胎兒蛋白的升高來做早期診斷,但是甲型胎兒蛋白診斷的敏感性及特異性都不夠理想,因此本研究擬探討在血液中是否有肝癌相關的GGT特異型可以作為輔助的診斷標記,探討對象包括曾在肝癌組織被發現的GGT mRNA特異型V3,以及血清蛋白電泳中肝癌特有的GGT蛋白質特異型。發現在臨床肝癌血清中沒有偵測到任何mRNA,只有在新鮮抽取的血清能偵測到GAPDH mRNA,可能由於血清中RNA不穩定以及mRNA含量極低。在HepG2肝癌細胞偵測到V3 mRNA,適合作為研究GGT mRNA在肝癌中表現的細胞模式,另外,在蛋白質層次利用非變性膠片電泳將血清蛋白質分離後進行GGT 活性染色,發現肝相關疾病血清相較於正常人,在post-γ和β位置有特異型,本研究認為肝癌特異型應為在β位置的GGT。過去在不同研究由電泳結果所定義出的GGT特異型都不同,本研究中證實GGT蛋白質唾液酸化以及GGT與血清中其他大分子成份,如脂蛋白、脂質…等的結合,都是改變其在電泳中的移動速度而顯現不同特異型的原因,此外本研究發現將唾液酸切除並不會影響GGT酵素的活性。由於過去瞭解fucosyltransferase在肝癌中表現上升,使許多醣蛋白發生fucosylation,因此本研究利用一種能特異性結合fucose的凝集素(AAL),來探討肝癌中的GGT是否發生fucosylation,結果並未偵測到GGT與AAL結合,推測可能是在肝癌中,GGT 發生fucosylation的程度極低所致。 本篇論文的第二部份是探討細胞GGT活性對癌症治療的影響。由於GGT與細胞內維持GSH恆定有密切關係,而細胞內GSH能協助細胞抵抗氧化壓力及排出毒性物質。過去研究指出癌細胞內常有GGT基因表現量上升的情形,使得癌細胞內GSH含量較正常細胞來得高,利於腫瘤細胞生長和減低藥物毒殺作用,造成治療無效。本研究利用GGT專一性抑制劑GGsTop將GGT 活性抑制,發現抑制GGT能有效減少Huh7細胞內GSH的量,並使之無法抵抗苯醌引起的氧化傷害:添加GSH的組別,苯醌對Huh7 細胞的IC50為113.6 μM,而GGT被抑制的組別IC50降低至77.4 μM,兩者有明顯差異,除此之外,本篇論文中發現Huh7細胞對於Cisplatin有抗性,而當GGT活性被抑制後,會增加Huh7細胞對Cisplatin的敏感性,且在Cisplatin處理下,細胞為了因應藥物刺激而造成GGT基因表現上升。因此我們推測GGT的抑制劑有潛力成為一個癌症治療上藥物的佐劑,藉由抑制GGT活性來增加抗癌藥物毒殺細胞的作用可能成為癌症治療的一種策略。 | zh_TW |
| dc.description.abstract | γ-glutamyltransferase (GGT), a membrane-bound heterodimeric glycoprotein, is abundant in many tissues, including kidney, intestine and liver. GGT plays a key role in glutathione (GSH) homeostasis by breaking down extracellular GSH, which contributes to providing cysteine for intracellular GSH synthesis. Under pathological conditions, when liver cells are damaged, GGT is released to serum. In clinical examination, serum GGT activity is used to detect alcoholism and obstructive jaundice.
In the first part of this study, hepatoma cell lines and clinical HCC serum were used to study the differences on GGT between hepatoma and normal, including HCC-specific mRNA variants and protein isoforms, which might be developed as potent diagnostic markers. The results indicated that HepG2 cells express HCC-specific mRNA variant, V3, which might be a valuable cell model for studying the GGT mRNA expression state in HCC. Besides, we use native PAGE and then GGT activity staining to identify the HCC-specific protein isoforms. Different GGT isoforms were found between normal and liver diseases, while β-GGT might be HCC-specific. Owing to the different definitions of HCC-specific isoforms in previous studies, we also demonstrated that sialyation status and interaction with other components in serum contributed to different GGT electrophoresis mobility. However, the sialic acid content on GGT showed no correlation to its activity. On the other hand, in lectin extraction experiment using fucose-specific AAL (Aleuria aurantia), we found that fucosylation on GGT might be minor but needs further study. The second part of this study, we used an effective GGT inhibitor, GGsTop, to investigate the effect of GGT inhibition on chemotherapy efficacy. Previous researches indicated that GSH can maintain intracellular redox potential and participate in the detoxification of xenobiotic compounds. As the result of the important role of GGT in maintaining GSH homeostasis, cancer cells were found to exhibit higher GGT level to assist rapid growth and to resist oxidative stress. We found that the inhibition of GGT activity resulted in the decrease of intracellular GSH content and the failure to defend the oxidative damage induced by benzoquinone (BQ). Moreover, we also demonstrated that GGT mRNA level was elevated after Cisplatin treatment which caused resistance to Cisplatin (IC50 >50 μM ). When GGT was inhibited, Huh7 cells were more sensitive to the cytotoxic action of Cisplatin. Taken together, we concluded that GGT inhibitor might be promising as adjuvant for cancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:33:05Z (GMT). No. of bitstreams: 1 ntu-98-R96424025-1.pdf: 1516258 bytes, checksum: 1ab065ae1f58654c519a9755d58aa368 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要--------------------------------iv
英文摘要--------------------------------vi 縮寫表----------------------------------viii 圖表目錄--------------------------------ix 第一部份 一、緒論--------------------------------------------------1 1.1 γ-麩胺醯轉移酶之結構及功能介紹------------------------1 1.2 GGT基因家族及其轉錄出的mRNA variant-------------2 1.3 GGT蛋白質特異型 (isoform)電泳分析---------------2 1.4 與肝癌相關的GGT醣化情形-------------------------3 1.5 GGT作為肝癌診斷標記的可能性---------------------4 1.6 研究目標----------------------------------------6 二、材料與方法--------------------------------------------7 2.1 細胞培養----------------------------------------------7 2.2 核醣核酸的萃取----------------------------------------7 2.3 反轉錄-聚合酶連鎖反應---------------------------------8 2.4 細胞蛋白質萃取----------------------------------------9 2.5 GGT蛋白質膠片電泳分析---------------------------------9 2.6 GGT活性之定量分析------------------------------------10 2.7 唾液酸酶 (neuraminidase)處理移除唾液酸---------------11 2.8 凝集素 (lectin)萃取----------------------------------11 三、結果-------------------------------------------------13 3.1 肝癌細胞株和臨床肝癌血清檢體GGT mRNA variant的偵測---13 3.2 臨床肝癌血清與正常人血清中的GGT電泳特異型------------13 3.3 GGT會與血清中大分子成份結合並改變其在電泳中移動的速度14 3.4 GGT上唾液酸的含量加速其在電泳中的移動但不會改變本身的活性-------------------------------------------------------14 3.5 GGT發生fucosylation的程度不明顯----------------------15 四、討論-------------------------------------------------16 第二部份-------------------------------------------------25 一、緒論-------------------------------------------------25 1.1 穀胱甘肽 (glutathione)的介紹-------------------------25 1.2 癌細胞中GSH含量與GGT的關係---------------------------26 1.3 GGT與癌細胞抵抗氧化壓力與藥物毒殺的關係--------------27 1.4 GGT抑制劑介紹----------------------------------------28 1.5 研究目標---------------------------------------------28 二、材料與方法-------------------------------------------29 2.1 細胞培養---------------------------------------------29 2.2 細胞內GSH含量的測定----------------------------------29 2.3 細胞膜完整性分析-------------------------------------30 2.4 細胞粒線體膜電位的測定-------------------------------30 2.5 細胞活性測定-----------------------------------------30 三、結果-------------------------------------------------32 3.1比較HEK 293、Huh7、HepG2三株細胞中GGT mRNA表現、GGT活性以及細胞內GSH含量,並建立Huh7細胞實驗模式----------------32 3.2 GGsTop為GGT的有效抑制劑且對Huh7細胞不具細胞毒性------32 3.3 抑制GGT活性能有效降低細胞內GSH含量-------------------33 3.4 抑制GGT活性使Huh7細胞無法抵抗BQ引起的氧化傷害--------33 3.5 抑制GGT活性能增加Huh7細胞對藥物的敏感性--------------34 四、討論-------------------------------------------------36 參考文獻-------------------------------------------------45 附錄-----------------------------------------------------50 藥品清單-------------------------------------------------64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 特異型 | zh_TW |
| dc.subject | γ-麩胺醯轉移酶 | zh_TW |
| dc.subject | 人類肝細胞癌 | zh_TW |
| dc.subject | 診斷標記 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 化療感受性 | zh_TW |
| dc.subject | isoforms | en |
| dc.subject | hepatocellular carcinoma | en |
| dc.subject | γ-glutamyltransferase | en |
| dc.subject | chemotherapy | en |
| dc.subject | diagnostic marker | en |
| dc.subject | oxidative stress | en |
| dc.title | (Ⅰ) γ-麩胺醯轉移酶之特異型作為人類肝細胞癌診斷標記之研究
(Ⅱ) 抑制γ-麩胺醯轉移酶活性影響癌細胞對氧化壓力 和化療感受性之研究 | zh_TW |
| dc.title | (Ⅰ) Investigation on the isoforms of γ-glutamyltransferase as diagnostic markers of hepatocellular carcinoma
(Ⅱ) Effects of γ-glutamyltransferase inhibition on the susceptibility of cancer cells to oxidative stress and chemotherapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林亮音(Liang-In Lin),張雅雯(Ya-Wen Chang),賴明陽(Ming-Yang Lai) | |
| dc.subject.keyword | γ-麩胺醯轉移酶,人類肝細胞癌,特異型,診斷標記,氧化壓力,化療感受性, | zh_TW |
| dc.subject.keyword | γ-glutamyltransferase,hepatocellular carcinoma,isoforms,oxidative stress,diagnostic marker,chemotherapy, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
