Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor瞿大雄(Tah-Hsiung Chu)
dc.contributor.authorSung-Nien Hsiehen
dc.contributor.author謝松年zh_TW
dc.date.accessioned2021-06-15T02:32:12Z-
dc.date.available2009-08-17
dc.date.copyright2009-08-17
dc.date.issued2009
dc.date.submitted2009-08-14
dc.identifier.citationReferences
[1] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,”
IEEE Microw. Mag., vol. 3, no. 1, pp. 71–79, Mar. 2002.
[2] K. M. K. H. Leong, R. Y. Miyamoto, and T. Itoh, “Moving forward in retrodirective
antenna arrays,” IEEE Potentials, vol. 22, no. 3, pp. 16–21, Aug.–Sept.
2003.
[3] H. Matsumoto, “Research on solar power satellites and microwave power transmission
in japan,” IEEE Microw. Mag., vol. 3, no. 4, pp. 36–45, Dec. 2002.
[4] L. H. Hsieh, B. H. Strassner, S. J. Kokel, C. T. Rodenbeck, M. Y. Li, K. Chang,
F. E. Little, G. D. Arndt, and P. H. Ngo, “Development of a retrodirective
wireless microwave power transmission system,” in Proc. IEEE Antennas and
Propagation Society International Symposium, vol. 2, 22–27 June 2003, pp.
393–396.
[5] C. T. Rodenbeck, M. Y. Li, and K. Chang, “A phased-array architecture for
retrodirective microwave power transmission from the space solar power satellite,”
in Proc. IEEE MTT-S International Microwave Symposium Digest, vol. 3,
6–11 June 2004, pp. 1679–1682.
[6] S. Andre and D. Leonard, “An active retrodirective array for satellite communications,”
IEEE Trans. Antennas Propag., vol. 12, no. 2, pp. 181–186, Mar.
1964.
[7] C. Belfi, C. Rothenberg, L. Schwartzman, R. Tilley, and A. Wills, “A satellite
data transmission antenna,” IEEE Trans. Antennas Propag., vol. 12, no. 2, pp.
200–206, Mar. 1964.
[8] E. Gruenberg and C. Johnson, “Satellite communications relay system using a
retrodirective space antenna,” IEEE Trans. Antennas Propag., vol. 12, no. 2,
pp. 215–223, Mar. 1964.
[9] R. Chernoff, “Large active retrodirective arrays for space applications,” IEEE
Trans. Antennas Propag., vol. 27, no. 4, pp. 489–496, July 1979.
[10] R. Y. Miyamoto, Y. Qian, and T. Itoh, “Active retrodirective array for remote
tagging and wireless sensor applications,” in Proc. IEEE MTT-S International
Microwave Symposium Digest, vol. 3, 11–16 June 2000, pp. 1431–1434.
[11] R. Y. Miyamoto, Y. Qian, and T. Itoh, “A reconfigurable active retrodirective/
direct conversion receiver array for wireless sensor systems,” in Proc. IEEE
MTT-S International Microwave Symposium Digest, vol. 2, 20–25 May 2001,
pp. 1119–1122.
[12] R. Y. Miyamoto, K. M. K. H. Leong, S. S. Jeon, Y. Wang, and T. Itoh, “An
adaptive multi-functional array for wireless sensor systems,” in Proc. IEEE
MTT-S International Microwave Symposium Digest, vol. 2, 2–7 June 2002, pp.
1369–1372.
[13] R. Y. Miyamoto, K. M. K. H. Leong, S. S. Jeon, Y.Wang, Y. Qian, and T. Itoh,
“Digital wireless sensor server using an adaptive smart-antenna/retrodirective
array,” IEEE Trans. Veh. Technol., vol. 52, no. 5, pp. 1181–1188, Sept. 2003.
[14] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective
array system for wireless sensor server applications,” IEEE Trans. Mi-
crow. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.
[15] L. Chen and S. Yan, “The design of retrodirective array in wireless sensor
networks,” in Proc. International Conference on Networks Security, Wireless
Communications and Trusted Computing NSWCTC '09, vol. 2, 25–26 Apr.
2009, pp. 219–222.
[16] S. L. Karode and V. F. Fusco, “Self-tracking duplex communication link using
planar retrodirective antennas,” IEEE Trans. Antennas Propag., vol. 47, no. 6,
pp. 993–1000, June 1999.
[17] C. Luxey and J. M. Laheurte, “A retrodirective transponder with polarization
duplexing for dedicated short-range communications,” IEEE Trans. Microw.
Theory Tech., vol. 47, no. 9, pp. 1910–1915, Sept. 1999.
[18] V. F. Fusco, “Retrodirective array techniques for ACC vehicular augmentation,”
in Proc. IEE Colloquium on Antennas for Automotives, 10 Mar. 2000,
pp. 6/1–6/5.
[19] K. M. K. H. Leong, Y. Wang, and T. Itoh, “A full duplex capable retrodirective
array system for high-speed beam tracking and pointing applications,” IEEE
Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1479–1489, May 2004.
[20] D. S. Goshi, K. M. K. H. Leong, and T. Itoh, “A sparsely designed retrodirective
transponder,” IEEE Antennas Wireless Propag. Lett., vol. 5, no. 1, pp. 339–342,
Dec. 2006.
[21] D. S. Goshi, K. M. K. Leong, and T. Itoh, “A sparse retrodirective transponder
array with a time shared phase-conjugator,” IEEE Trans. Antennas Propag.,
vol. 55, no. 8, pp. 2367–2372, Aug. 2007.
[22] L. G. V. Atta, “Electromagnetic reflector,” U.S. Patent 2 908 002, 1959.
[23] E. Sharp and M. Diab, “Van Atta reflector array,” IRE Transactions on An-
tennas and Propagation, vol. 8, no. 4, pp. 436–438, July 1960.
[24] R. C. Hansen, “Communications satellites using arrays,” Proceedings of the
IRE, vol. 49, no. 6, pp. 1066–1074, June 1961.
[25] J. Appel-Hansen, “A Van Atta reflector consisting of half-wave dipoles,” IEEE
Trans. Antennas Propag., vol. 14, no. 6, pp. 694–700, Nov. 1966.
[26] T. Larsen, “Reflector arrays,” IEEE Trans. Antennas Propag., vol. 14, no. 6,
pp. 689–693, Nov. 1966.
[27] S. J. Chung and K. Chang, “A retrodirective microstrip antenna array,” IEEE
Trans. Antennas Propag., vol. 46, no. 12, pp. 1802–1809, Dec. 1998.
[28] W. J. Tseng, S. J. Chung, and K. Chang, “A planar Van Atta array reflector
with retrodirectivity in both E-plane and H-plane,” IEEE Trans. Antennas
Propag., vol. 48, no. 2, pp. 173–175, Feb. 2000.
[29] M. G. Christodoulou and D. P. Chrissoulidis, “2D Van Atta retrodirective array
using dual polarized two-port square microstrip patches,” in Proc. Eleventh In-
ternational Conference on Antennas and Propagation, vol. 2, 17–20 Apr. 2001,
pp. 814–816.
[30] Y. J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective
rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory
Tech., vol. 54, no. 7, pp. 2970–2976, July 2006.
[31] D. E. N. Davies, “Some properties of Van Atta arrays and the use of 2-way
amplification in the delay paths.” Proceedings of the IEE, vol. 110, pp. 507–
512, Mar. 1963.
[32] T. Glynn, “Pattern of an active Van Atta array employing mismatched bilateral
amplifiers,” IEEE Trans. Antennas Propag., vol. 17, no. 3, pp. 355–356, May
1969.
[33] T. J. Hong and S. J. Chung, “24 GHz active retrodirective antenna array,”
Electronics Letters, vol. 35, no. 21, pp. 1785–1786, Oct. 1999.
[34] S. J. Chung, S. M. Chen, and Y. C. Lee, “A novel bi-directional amplifier with
applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw.
Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003.
[35] S. L. Karode and V. F. Fusco, “Frequency offset retrodirective antenna array,”
Electronics Letters, vol. 33, no. 16, pp. 1350–1351, July 1997.
[36] N. B. Buchanan, T. Brabetz, and V. F. Fusco, “A 62/66 GHz frequency offset
retrodirective array,” in Proc. IEEE MTT-S International Microwave Sympo-
sium Digest, vol. 1, 2–7 June 2002, pp. 315–318.
[37] C. Y. Pon, “Retrodirective array using the heterodyne technique,” IEEE Trans.
Antennas Propag., vol. 12, no. 2, pp. 176–180, Mar. 1964.
[38] C. W. Pobanz and T. Itoh, “A conformal retrodirective array for radar applications
using a heterodyne phased scattering element,” in Proc. IEEE MTT-S
International Microwave Symposium Digest, 16–20 May 1995, pp. 905–908.
[39] R. Y. Miyamoto, Y. Qian, and T. Itoh, “A novel phase conjugator for retrodirective
array application,” in Proc. IEEE Antennas and Propagation Society
International Symposium, vol. 3, 11–16 July 1999, pp. 1674–1677.
[40] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective
transponder for remote information retrieval-on-demand,” IEEE Trans. Mi-
crow. Theory Tech., vol. 49, no. 9, pp. 1658–1662, Sept. 2001.
[41] D. M. K. Ah Yo, W. E. Forsyth, and W. A. Shiroma, “A 360 retrodirective
self-oscillating mixer array,” in Proc. IEEE MTT-S International Microwave
Symposium Digest, vol. 2, 11–16 June 2000, pp. 813–816.
[42] T. Brabetz, V. F. Fusco, and S. Karode, “Balanced subharmonic mixers for
retrodirective-array applications,” IEEE Trans. Microw. Theory Tech., vol. 49,
no. 3, pp. 465–469, Mar. 2001.
[43] G. S. Shiroma, R. Y. Miyamoto, and W. A. Shiroma, “A 16-element twodimensional
active self-steering array using self-oscillating mixers,” IEEE
Trans. Microw. Theory Tech., vol. 51, no. 12, pp. 2476–2482, Dec. 2003.
[44] S. C. Yen and T. H. Chu, “A retro-directive antenna array with phase conjugation
circuit using subharmonically injection-locked self-oscillating mixers,”
IEEE Trans. Antennas Propag., vol. 52, no. 1, pp. 154–164, Jan. 2004.
[45] A. Collado, A. Georgiadis, and A. Suarez, “Optimized design of retro-directive
arrays based on self-oscillating mixers using harmonic-balance and conversionmatrix
techniques,” in Proc. IEEE MTT-S International Microwave Symposium
Digest, 11–16 June 2006, pp. 1125–1128.
[46] V. Fusco, C. B. Soo, and N. Buchanan, “Analysis and characterization of PLLbased
retrodirective array,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2,
pp. 730–738, Feb. 2005.
[47] G. S. Shiroma, R. Y. Miyamoto, and W. A. Shiroma, “A full-duplex dualfrequency
self-steering array using phase detection and phase shifting,” IEEE
Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 128–134, Jan. 2006.
[48] N. Buchanan and V. Fusco, “Mirror image sawtooth phase conjugator circuit
for retrodirective antenna applications,” IEEE Antennas Wireless Propag. Lett.,
vol. 6, pp. 503–505, 2007.
[49] N. B. Buchanan and V. F. Fusco, “Quadrant switching PLL phase conjugator
for retrodirective antenna applications,” in Proc. IEEE MTT-S International
Microwave Symposium Digest, 15–20 June 2008, pp. 791–794.
[50] S. Haykin, Adaptive Filter Theory. Prentice-Hall Inc., 2002.
[51] A. H. Sayed, Adaptive Filters. John Wiley-Interscience, 2008.
[52] H. L. V. Tree, Optimum Array Processing. Part IV of Detection, Estimation,
and Modulation Theory. Wiley-Interscience, 2002.
[53] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and
Techniques. Prentice-Hall Inc., 1993.
[54] A. J. Fenn, Adaptive Antennas and Phased Arrays for Radar and Communica-
tions. Artech House Publishers, 2007.
[55] B. G. Wahlberg, I. M. Y. Mareels, and I. Webster, “Experimental and theoretical
comparison of some algorithms for beamforming in single receiver adaptive
arrays,” IEEE Trans. Antennas Propag., vol. 39, no. 1, pp. 21–28, Jan. 1991.
[56] C. M. Rader, “VLSI systolic arrays for adaptive nulling,” IEEE Signal Process.
Mag., vol. 13, no. 4, pp. 29–49, July 1996.
[57] T. B. Vu, “Method of null steering without using phase shifters,” IEE Proceed-
ings H Microwaves, Optics and Antennas, vol. 131, no. 4, pp. 242–245, Aug.
1984.
[58] T. Heath, “Simultaneous beam steering and formation with coupled, nonlinear
oscillator arrays,” IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 2031–2035,
June 2005.
[59] A. Georgiadis, A. Collado, and A. Suarez, “Pattern nulling in coupled oscillator
antenna arrays,” IEEE Trans. Antennas Propag., vol. 55, no. 5, pp. 1267–1274,
May 2007.
[60] Y. Yashchyshyn and G. Starszuk, “Investigation of a simple four-element nulling
steering antenna array,” IEE Proceedings -Microwaves, Antennas and Propaga-
tion, vol. 152, no. 2, pp. 92–96, Apr. 2005.
[61] S. N. Hsieh and T. H. Chu, “Linear retro-directive antenna array using 90
hybrids,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1573–1580, June
2008.
[62] S. N. Hsieh, C. H. Tseng, and T. H. Chu, “A three-element retro-directive antenna
array,” in Proc. Asia-Paci c Microwave Proceedings APMC 2005, vol. 3,
4–7 Dec. 2005.
[63] S. N. Hsieh and T. H. Chu, “Linear retro-directive antenna arrays using 90
hybrids,” in Proc. IEEE Antennas and Propagation Society International Sym-
posium 2006, 9–14 July 2006, pp. 3347–3350.
[64] S. N. Hsieh and T. H. Chu, “A folding method to design linear retro-directive
antenna array using hybrid circuits,” in Proc. IEEE Antennas and Propagation
Society International Symposium AP-S 2008, 5–11 July 2008, pp. 1–4.
[65] S. N. Hsieh and T. H. Chu, “A four-element reflecto-nulling antenna array,” in
Proc. Asia-Paci c Microwave Conference APMC 2006, 12–15 Dec. 2006, pp.
2078–2081.
[66] S. N. Hsieh and T. H. Chu, “A four-element retro- and reflecto-nulling antenna
array,” in 2007 National Symposium on Telecommunications, Nov. 2007.
[67] S. N. Hsieh and T. H. Chu, “A linear retro- and reflecto-nulling antenna array,”
in Proc. Asia-Paci c Microwave Conference APMC 2008, 2008.
[68] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005.
[69] Advanced Design System 2004A, S-Parameter Simulation, Agilent Technologies,
Sept. 2004.
[70] MATLAB 7.7 (R2008b), The Mathworks, 2008.
[71] Advanced Design System 2004A, Momentum, Agilent Technologies, Sept. 2004.
[72] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill Science/
Engineering/Math, 1976.
[73] R. K. Mongia, I. J. Bahl, P. Bhartia, and J. Hong, RF and Microwave Coupled-
Line Circuits, 2nd ed. Artech House Publishers, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43902-
dc.description.abstract本論文旨在提出新型的架構與設計方式,適當利用九十度耦合器的特性,設計線性回波指向天線陣列與回波與反射波零點天線陣列。
第一章介紹指向天線陣列與零點天線陣列,並於第二章敘述九十度耦合器的基本原理及基本公式推導,並且提出一折疊法,應用九十度耦合器於指向天線陣列和零點天線陣列設計。第三章與第四章則分別利用此方法,設計使用九十度耦合器之線性回波指向天線陣列以及回波與反射波零點天線陣列,並以實驗驗證。
論文第三章主要係分析及製作一線性回波指向天線陣列,使用九十度耦合器以及利用所提出之折疊法設計,並建立一般化電路架構,使其可應用於任意數量天線單元之天線陣列。藉由採用九十度耦合器及折疊法設計之耦合器電路,能使發射天線的輸出訊號之相位差,反相於接收天線的接收訊號之相位差,並且相對於Van-Atta陣列,訊號從輸入埠至平面的耦合器電路,到輸出埠所經過之實際路徑長度皆相同。本章對一般化電路架構,及不理想因素對系統之影響,予以詳細分析,並且製作操作頻率於2.9 GHz之三單元、四單元、以及六單元回波指向天線陣列,藉由量測其輻射場型,驗證所提出之理論,量測結果與理論相吻合。
第四章則敘述使用九十度耦合器及折疊法,設計一可在訊號入射方向及其反射角方向,各產生一零點於其傳輸輻射場型之零點天線陣列。本章首先介紹利用折疊法,設計反射零點天線陣列的原理與實作驗證結果,之後敘述使用折疊法設計一平面耦合器電路,應用於回波與反射波零點天線陣列。相較於使用可適性濾波器理論及數位訊號處理技術,實現零點生成之天線陣列,本章所提出之耦合器電
路由於係利用被動微波元件,因此具有即時響應,在頻率較高場合亦能實現。本章亦提出回波與反射波零點天線陣列的一般化電路架構,使其可應用於任意數量天線單元之天線陣列。考慮電路中各參數對系統之影響,本章亦提出理論的推演與實作考量分析,並製作操作頻率於2.9 GHz的三單元、四單元、五單元、以及六單元回波與反射波零點天線陣列,藉由量測其輻射場型以驗證所提出之理論,且量測結果與理論吻合。
zh_TW
dc.description.abstractThis dissertation presents the study results on two novel designs of retro-directive
antenna array and retro- and reflecto-nulling antenna array using 90 hybrids. Chapter
2 introduces the basic theory of operations of the directive and nulling arrays
and the basic principles of the folding methods by using 90 hybrids. Based on
the folding methods and the theory of operations developed in this chapter, a novel
design on retro-directive antenna array is described in Chapter 3 and a novel design
of nulling array called “retro- and reflecto-nulling array” is described in Chapter 4.
Both the theory and the experiments are studied.
Chapter 3 presents a novel approach to design linear passive retro-directive antenna
arrays by properly making use of 90 hybrids. For a 90 hybrid, when its
direct port and coupled port are terminated with the same reflection coefficient, the
phase difference of the reflected signals at the other two ports are reversed to that
of the incident signals. This then becomes a phase difference reversal circuit (or
a retro-directive circuit) and leads to the design of linear retro-directive antenna
arrays using 90 hybrids. In this approach, all signals from the input ports to the
output ports of the hybrid circuits inherently have the same path length especially
for the planar hybrid circuits. The formulas and a folding method on designing linear
retro-directive array circuits with arbitrary element numbers are presented with the
measurement results of three-element, four-element, and six-element retro-directive
antenna arrays, which are operated at 2.9 GHz.
In Chapter 4, a novel approach is developed to design linear passive retro- and reflecto-nulling antenna array which has two nulls occurring at the incident and
specular reflection directions without using digital signal processing techniques. At
the beginning of this chapter, a four-element reflecto-nulling antenna array is developed
to verify the theory of operations of the nulling arrays described in Chapter
2. Then, by the folding method described in Chapter 2, a phase difference reversal
circuit developed in Chapter 2 and Chapter 3 can have the phase difference between
two adjacent ports of the phase difference reversal circuit be reversed as −Δϕi if the
phase difference of the input ports is Δϕi. Thus, the retro- and reflecto-nulling array
circuits can be implemented by the array circuits developed in Chapter 2 and Chapter
3 to achieve retro-nulling characteristics and by properly using the phase shifters
to achieve reflecto-nulling characteristics. This approach is implemented by a passive
circuit with the use of 90 hybrids and phase shifters which are properly connected
to the transmitting and receiving antennas. The array then has the retransmitted
radiation pattern giving two nulls at the incident direction θi and specular direction
−θi as the incident wave angle is at θi. The formulas and a folding method
on designing linear retro- and reflecto-nulling array circuits are presented with the
measurement results of three-element, four-element, five-element, and six-element
retro- and reflecto-nulling antenna arrays operated at 2.9 GHz.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:32:12Z (GMT). No. of bitstreams: 1
ntu-98-D92942004-1.pdf: 6469758 bytes, checksum: 8fb64282f700578c1c218e811c71ec8c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
誌謝i
摘要iii
Abstract v
Contents vii
List of Figures x
List of Tables xiii
1 Introduction 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Chapter Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Basic Principles 9
2.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A. Retro-directive Array . . . . . . . . . . . . . . . . . . 10
B. Reflect Array . . . . . . . . . . . . . . . . . . . . . . 11
C. Retro-nulling Array . . . . . . . . . . . . . . . . . . 12
D. Reflecto-nulling Array . . . . . . . . . . . . . . . . . 12
2.1.1 Matrix Formulations . . . . . . . . . . . . . . . . . . . . . . . 13
A. Retro-directive Array . . . . . . . . . . . . . . . . . . 15
B. Reflect Array . . . . . . . . . . . . . . . . . . . . . . 15
C. Retro-nulling Array . . . . . . . . . . . . . . . . . . 16
D. Reflecto-nulling Array . . . . . . . . . . . . . . . . . 17
2.2 90 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Folding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Linear Retro-directive Antenna Array 25
3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 General Structures . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 31
3.2 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Experimantal Verification . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 90 Hybrid Circuit . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Retro-directive Antenna Arrays . . . . . . . . . . . . . . . . . 36
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Linear Retro- and Re
ecto-nulling Antenna Array 47
4.1 Linear Reflecto-nulling Antenna Array . . . . . . . . . . . . . . . . . 47
4.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Experimental Verification . . . . . . . . . . . . . . . . . . . . 51
4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Linear Retro- and Reflecto-nulling Antenna Array . . . . . . . . . . . 52
4.2.1 Hybrid Circuits Design . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 General Structures . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 69
4.2.4 Circuits Implementation . . . . . . . . . . . . . . . . . . . . . 72
4.2.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5 Concluding Remarks 89
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
References 93
dc.language.isoen
dc.subject零點陣列zh_TW
dc.subject九十度耦合器zh_TW
dc.subject回波指向陣列zh_TW
dc.subjectnulling arrayen
dc.subject90 degree hybridsen
dc.subjectretro-directive arrayen
dc.title兩個新型指向及零點陣列設計-使用九十度耦合器zh_TW
dc.titleTwo Novel Designs of Directive and Nulling Arrays
Using 90◦ Hybrids
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳俊雄(Chun-Hsiung Chen),鄭士康(Shyh-Kang Jeng),鍾世忠(Shyh-Jong Chung),曾昭雄(Chao-Hsiung Tseng)
dc.subject.keyword九十度耦合器,回波指向陣列,零點陣列,zh_TW
dc.subject.keyword90 degree hybrids,retro-directive array,nulling array,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2009-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
6.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved