請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43902完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 瞿大雄(Tah-Hsiung Chu) | |
| dc.contributor.author | Sung-Nien Hsieh | en |
| dc.contributor.author | 謝松年 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:32:12Z | - |
| dc.date.available | 2009-08-17 | |
| dc.date.copyright | 2009-08-17 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | References
[1] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, no. 1, pp. 71–79, Mar. 2002. [2] K. M. K. H. Leong, R. Y. Miyamoto, and T. Itoh, “Moving forward in retrodirective antenna arrays,” IEEE Potentials, vol. 22, no. 3, pp. 16–21, Aug.–Sept. 2003. [3] H. Matsumoto, “Research on solar power satellites and microwave power transmission in japan,” IEEE Microw. Mag., vol. 3, no. 4, pp. 36–45, Dec. 2002. [4] L. H. Hsieh, B. H. Strassner, S. J. Kokel, C. T. Rodenbeck, M. Y. Li, K. Chang, F. E. Little, G. D. Arndt, and P. H. Ngo, “Development of a retrodirective wireless microwave power transmission system,” in Proc. IEEE Antennas and Propagation Society International Symposium, vol. 2, 22–27 June 2003, pp. 393–396. [5] C. T. Rodenbeck, M. Y. Li, and K. Chang, “A phased-array architecture for retrodirective microwave power transmission from the space solar power satellite,” in Proc. IEEE MTT-S International Microwave Symposium Digest, vol. 3, 6–11 June 2004, pp. 1679–1682. [6] S. Andre and D. Leonard, “An active retrodirective array for satellite communications,” IEEE Trans. Antennas Propag., vol. 12, no. 2, pp. 181–186, Mar. 1964. [7] C. Belfi, C. Rothenberg, L. Schwartzman, R. Tilley, and A. Wills, “A satellite data transmission antenna,” IEEE Trans. Antennas Propag., vol. 12, no. 2, pp. 200–206, Mar. 1964. [8] E. Gruenberg and C. Johnson, “Satellite communications relay system using a retrodirective space antenna,” IEEE Trans. Antennas Propag., vol. 12, no. 2, pp. 215–223, Mar. 1964. [9] R. Chernoff, “Large active retrodirective arrays for space applications,” IEEE Trans. Antennas Propag., vol. 27, no. 4, pp. 489–496, July 1979. [10] R. Y. Miyamoto, Y. Qian, and T. Itoh, “Active retrodirective array for remote tagging and wireless sensor applications,” in Proc. IEEE MTT-S International Microwave Symposium Digest, vol. 3, 11–16 June 2000, pp. 1431–1434. [11] R. Y. Miyamoto, Y. Qian, and T. Itoh, “A reconfigurable active retrodirective/ direct conversion receiver array for wireless sensor systems,” in Proc. IEEE MTT-S International Microwave Symposium Digest, vol. 2, 20–25 May 2001, pp. 1119–1122. [12] R. Y. Miyamoto, K. M. K. H. Leong, S. S. Jeon, Y. Wang, and T. Itoh, “An adaptive multi-functional array for wireless sensor systems,” in Proc. IEEE MTT-S International Microwave Symposium Digest, vol. 2, 2–7 June 2002, pp. 1369–1372. [13] R. Y. Miyamoto, K. M. K. H. Leong, S. S. Jeon, Y.Wang, Y. Qian, and T. Itoh, “Digital wireless sensor server using an adaptive smart-antenna/retrodirective array,” IEEE Trans. Veh. Technol., vol. 52, no. 5, pp. 1181–1188, Sept. 2003. [14] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Mi- crow. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005. [15] L. Chen and S. Yan, “The design of retrodirective array in wireless sensor networks,” in Proc. International Conference on Networks Security, Wireless Communications and Trusted Computing NSWCTC '09, vol. 2, 25–26 Apr. 2009, pp. 219–222. [16] S. L. Karode and V. F. Fusco, “Self-tracking duplex communication link using planar retrodirective antennas,” IEEE Trans. Antennas Propag., vol. 47, no. 6, pp. 993–1000, June 1999. [17] C. Luxey and J. M. Laheurte, “A retrodirective transponder with polarization duplexing for dedicated short-range communications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1910–1915, Sept. 1999. [18] V. F. Fusco, “Retrodirective array techniques for ACC vehicular augmentation,” in Proc. IEE Colloquium on Antennas for Automotives, 10 Mar. 2000, pp. 6/1–6/5. [19] K. M. K. H. Leong, Y. Wang, and T. Itoh, “A full duplex capable retrodirective array system for high-speed beam tracking and pointing applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1479–1489, May 2004. [20] D. S. Goshi, K. M. K. H. Leong, and T. Itoh, “A sparsely designed retrodirective transponder,” IEEE Antennas Wireless Propag. Lett., vol. 5, no. 1, pp. 339–342, Dec. 2006. [21] D. S. Goshi, K. M. K. Leong, and T. Itoh, “A sparse retrodirective transponder array with a time shared phase-conjugator,” IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2367–2372, Aug. 2007. [22] L. G. V. Atta, “Electromagnetic reflector,” U.S. Patent 2 908 002, 1959. [23] E. Sharp and M. Diab, “Van Atta reflector array,” IRE Transactions on An- tennas and Propagation, vol. 8, no. 4, pp. 436–438, July 1960. [24] R. C. Hansen, “Communications satellites using arrays,” Proceedings of the IRE, vol. 49, no. 6, pp. 1066–1074, June 1961. [25] J. Appel-Hansen, “A Van Atta reflector consisting of half-wave dipoles,” IEEE Trans. Antennas Propag., vol. 14, no. 6, pp. 694–700, Nov. 1966. [26] T. Larsen, “Reflector arrays,” IEEE Trans. Antennas Propag., vol. 14, no. 6, pp. 689–693, Nov. 1966. [27] S. J. Chung and K. Chang, “A retrodirective microstrip antenna array,” IEEE Trans. Antennas Propag., vol. 46, no. 12, pp. 1802–1809, Dec. 1998. [28] W. J. Tseng, S. J. Chung, and K. Chang, “A planar Van Atta array reflector with retrodirectivity in both E-plane and H-plane,” IEEE Trans. Antennas Propag., vol. 48, no. 2, pp. 173–175, Feb. 2000. [29] M. G. Christodoulou and D. P. Chrissoulidis, “2D Van Atta retrodirective array using dual polarized two-port square microstrip patches,” in Proc. Eleventh In- ternational Conference on Antennas and Propagation, vol. 2, 17–20 Apr. 2001, pp. 814–816. [30] Y. J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970–2976, July 2006. [31] D. E. N. Davies, “Some properties of Van Atta arrays and the use of 2-way amplification in the delay paths.” Proceedings of the IEE, vol. 110, pp. 507– 512, Mar. 1963. [32] T. Glynn, “Pattern of an active Van Atta array employing mismatched bilateral amplifiers,” IEEE Trans. Antennas Propag., vol. 17, no. 3, pp. 355–356, May 1969. [33] T. J. Hong and S. J. Chung, “24 GHz active retrodirective antenna array,” Electronics Letters, vol. 35, no. 21, pp. 1785–1786, Oct. 1999. [34] S. J. Chung, S. M. Chen, and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003. [35] S. L. Karode and V. F. Fusco, “Frequency offset retrodirective antenna array,” Electronics Letters, vol. 33, no. 16, pp. 1350–1351, July 1997. [36] N. B. Buchanan, T. Brabetz, and V. F. Fusco, “A 62/66 GHz frequency offset retrodirective array,” in Proc. IEEE MTT-S International Microwave Sympo- sium Digest, vol. 1, 2–7 June 2002, pp. 315–318. [37] C. Y. Pon, “Retrodirective array using the heterodyne technique,” IEEE Trans. Antennas Propag., vol. 12, no. 2, pp. 176–180, Mar. 1964. [38] C. W. Pobanz and T. Itoh, “A conformal retrodirective array for radar applications using a heterodyne phased scattering element,” in Proc. IEEE MTT-S International Microwave Symposium Digest, 16–20 May 1995, pp. 905–908. [39] R. Y. Miyamoto, Y. Qian, and T. Itoh, “A novel phase conjugator for retrodirective array application,” in Proc. IEEE Antennas and Propagation Society International Symposium, vol. 3, 11–16 July 1999, pp. 1674–1677. [40] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Mi- crow. Theory Tech., vol. 49, no. 9, pp. 1658–1662, Sept. 2001. [41] D. M. K. Ah Yo, W. E. Forsyth, and W. A. Shiroma, “A 360 retrodirective self-oscillating mixer array,” in Proc. IEEE MTT-S International Microwave Symposium Digest, vol. 2, 11–16 June 2000, pp. 813–816. [42] T. Brabetz, V. F. Fusco, and S. Karode, “Balanced subharmonic mixers for retrodirective-array applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 465–469, Mar. 2001. [43] G. S. Shiroma, R. Y. Miyamoto, and W. A. Shiroma, “A 16-element twodimensional active self-steering array using self-oscillating mixers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 12, pp. 2476–2482, Dec. 2003. [44] S. C. Yen and T. H. Chu, “A retro-directive antenna array with phase conjugation circuit using subharmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propag., vol. 52, no. 1, pp. 154–164, Jan. 2004. [45] A. Collado, A. Georgiadis, and A. Suarez, “Optimized design of retro-directive arrays based on self-oscillating mixers using harmonic-balance and conversionmatrix techniques,” in Proc. IEEE MTT-S International Microwave Symposium Digest, 11–16 June 2006, pp. 1125–1128. [46] V. Fusco, C. B. Soo, and N. Buchanan, “Analysis and characterization of PLLbased retrodirective array,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 730–738, Feb. 2005. [47] G. S. Shiroma, R. Y. Miyamoto, and W. A. Shiroma, “A full-duplex dualfrequency self-steering array using phase detection and phase shifting,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 128–134, Jan. 2006. [48] N. Buchanan and V. Fusco, “Mirror image sawtooth phase conjugator circuit for retrodirective antenna applications,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 503–505, 2007. [49] N. B. Buchanan and V. F. Fusco, “Quadrant switching PLL phase conjugator for retrodirective antenna applications,” in Proc. IEEE MTT-S International Microwave Symposium Digest, 15–20 June 2008, pp. 791–794. [50] S. Haykin, Adaptive Filter Theory. Prentice-Hall Inc., 2002. [51] A. H. Sayed, Adaptive Filters. John Wiley-Interscience, 2008. [52] H. L. V. Tree, Optimum Array Processing. Part IV of Detection, Estimation, and Modulation Theory. Wiley-Interscience, 2002. [53] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques. Prentice-Hall Inc., 1993. [54] A. J. Fenn, Adaptive Antennas and Phased Arrays for Radar and Communica- tions. Artech House Publishers, 2007. [55] B. G. Wahlberg, I. M. Y. Mareels, and I. Webster, “Experimental and theoretical comparison of some algorithms for beamforming in single receiver adaptive arrays,” IEEE Trans. Antennas Propag., vol. 39, no. 1, pp. 21–28, Jan. 1991. [56] C. M. Rader, “VLSI systolic arrays for adaptive nulling,” IEEE Signal Process. Mag., vol. 13, no. 4, pp. 29–49, July 1996. [57] T. B. Vu, “Method of null steering without using phase shifters,” IEE Proceed- ings H Microwaves, Optics and Antennas, vol. 131, no. 4, pp. 242–245, Aug. 1984. [58] T. Heath, “Simultaneous beam steering and formation with coupled, nonlinear oscillator arrays,” IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 2031–2035, June 2005. [59] A. Georgiadis, A. Collado, and A. Suarez, “Pattern nulling in coupled oscillator antenna arrays,” IEEE Trans. Antennas Propag., vol. 55, no. 5, pp. 1267–1274, May 2007. [60] Y. Yashchyshyn and G. Starszuk, “Investigation of a simple four-element nulling steering antenna array,” IEE Proceedings -Microwaves, Antennas and Propaga- tion, vol. 152, no. 2, pp. 92–96, Apr. 2005. [61] S. N. Hsieh and T. H. Chu, “Linear retro-directive antenna array using 90 hybrids,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1573–1580, June 2008. [62] S. N. Hsieh, C. H. Tseng, and T. H. Chu, “A three-element retro-directive antenna array,” in Proc. Asia-Paci c Microwave Proceedings APMC 2005, vol. 3, 4–7 Dec. 2005. [63] S. N. Hsieh and T. H. Chu, “Linear retro-directive antenna arrays using 90 hybrids,” in Proc. IEEE Antennas and Propagation Society International Sym- posium 2006, 9–14 July 2006, pp. 3347–3350. [64] S. N. Hsieh and T. H. Chu, “A folding method to design linear retro-directive antenna array using hybrid circuits,” in Proc. IEEE Antennas and Propagation Society International Symposium AP-S 2008, 5–11 July 2008, pp. 1–4. [65] S. N. Hsieh and T. H. Chu, “A four-element reflecto-nulling antenna array,” in Proc. Asia-Paci c Microwave Conference APMC 2006, 12–15 Dec. 2006, pp. 2078–2081. [66] S. N. Hsieh and T. H. Chu, “A four-element retro- and reflecto-nulling antenna array,” in 2007 National Symposium on Telecommunications, Nov. 2007. [67] S. N. Hsieh and T. H. Chu, “A linear retro- and reflecto-nulling antenna array,” in Proc. Asia-Paci c Microwave Conference APMC 2008, 2008. [68] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005. [69] Advanced Design System 2004A, S-Parameter Simulation, Agilent Technologies, Sept. 2004. [70] MATLAB 7.7 (R2008b), The Mathworks, 2008. [71] Advanced Design System 2004A, Momentum, Agilent Technologies, Sept. 2004. [72] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill Science/ Engineering/Math, 1976. [73] R. K. Mongia, I. J. Bahl, P. Bhartia, and J. Hong, RF and Microwave Coupled- Line Circuits, 2nd ed. Artech House Publishers, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43902 | - |
| dc.description.abstract | 本論文旨在提出新型的架構與設計方式,適當利用九十度耦合器的特性,設計線性回波指向天線陣列與回波與反射波零點天線陣列。
第一章介紹指向天線陣列與零點天線陣列,並於第二章敘述九十度耦合器的基本原理及基本公式推導,並且提出一折疊法,應用九十度耦合器於指向天線陣列和零點天線陣列設計。第三章與第四章則分別利用此方法,設計使用九十度耦合器之線性回波指向天線陣列以及回波與反射波零點天線陣列,並以實驗驗證。 論文第三章主要係分析及製作一線性回波指向天線陣列,使用九十度耦合器以及利用所提出之折疊法設計,並建立一般化電路架構,使其可應用於任意數量天線單元之天線陣列。藉由採用九十度耦合器及折疊法設計之耦合器電路,能使發射天線的輸出訊號之相位差,反相於接收天線的接收訊號之相位差,並且相對於Van-Atta陣列,訊號從輸入埠至平面的耦合器電路,到輸出埠所經過之實際路徑長度皆相同。本章對一般化電路架構,及不理想因素對系統之影響,予以詳細分析,並且製作操作頻率於2.9 GHz之三單元、四單元、以及六單元回波指向天線陣列,藉由量測其輻射場型,驗證所提出之理論,量測結果與理論相吻合。 第四章則敘述使用九十度耦合器及折疊法,設計一可在訊號入射方向及其反射角方向,各產生一零點於其傳輸輻射場型之零點天線陣列。本章首先介紹利用折疊法,設計反射零點天線陣列的原理與實作驗證結果,之後敘述使用折疊法設計一平面耦合器電路,應用於回波與反射波零點天線陣列。相較於使用可適性濾波器理論及數位訊號處理技術,實現零點生成之天線陣列,本章所提出之耦合器電 路由於係利用被動微波元件,因此具有即時響應,在頻率較高場合亦能實現。本章亦提出回波與反射波零點天線陣列的一般化電路架構,使其可應用於任意數量天線單元之天線陣列。考慮電路中各參數對系統之影響,本章亦提出理論的推演與實作考量分析,並製作操作頻率於2.9 GHz的三單元、四單元、五單元、以及六單元回波與反射波零點天線陣列,藉由量測其輻射場型以驗證所提出之理論,且量測結果與理論吻合。 | zh_TW |
| dc.description.abstract | This dissertation presents the study results on two novel designs of retro-directive
antenna array and retro- and reflecto-nulling antenna array using 90 hybrids. Chapter 2 introduces the basic theory of operations of the directive and nulling arrays and the basic principles of the folding methods by using 90 hybrids. Based on the folding methods and the theory of operations developed in this chapter, a novel design on retro-directive antenna array is described in Chapter 3 and a novel design of nulling array called “retro- and reflecto-nulling array” is described in Chapter 4. Both the theory and the experiments are studied. Chapter 3 presents a novel approach to design linear passive retro-directive antenna arrays by properly making use of 90 hybrids. For a 90 hybrid, when its direct port and coupled port are terminated with the same reflection coefficient, the phase difference of the reflected signals at the other two ports are reversed to that of the incident signals. This then becomes a phase difference reversal circuit (or a retro-directive circuit) and leads to the design of linear retro-directive antenna arrays using 90 hybrids. In this approach, all signals from the input ports to the output ports of the hybrid circuits inherently have the same path length especially for the planar hybrid circuits. The formulas and a folding method on designing linear retro-directive array circuits with arbitrary element numbers are presented with the measurement results of three-element, four-element, and six-element retro-directive antenna arrays, which are operated at 2.9 GHz. In Chapter 4, a novel approach is developed to design linear passive retro- and reflecto-nulling antenna array which has two nulls occurring at the incident and specular reflection directions without using digital signal processing techniques. At the beginning of this chapter, a four-element reflecto-nulling antenna array is developed to verify the theory of operations of the nulling arrays described in Chapter 2. Then, by the folding method described in Chapter 2, a phase difference reversal circuit developed in Chapter 2 and Chapter 3 can have the phase difference between two adjacent ports of the phase difference reversal circuit be reversed as −Δϕi if the phase difference of the input ports is Δϕi. Thus, the retro- and reflecto-nulling array circuits can be implemented by the array circuits developed in Chapter 2 and Chapter 3 to achieve retro-nulling characteristics and by properly using the phase shifters to achieve reflecto-nulling characteristics. This approach is implemented by a passive circuit with the use of 90 hybrids and phase shifters which are properly connected to the transmitting and receiving antennas. The array then has the retransmitted radiation pattern giving two nulls at the incident direction θi and specular direction −θi as the incident wave angle is at θi. The formulas and a folding method on designing linear retro- and reflecto-nulling array circuits are presented with the measurement results of three-element, four-element, five-element, and six-element retro- and reflecto-nulling antenna arrays operated at 2.9 GHz. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:32:12Z (GMT). No. of bitstreams: 1 ntu-98-D92942004-1.pdf: 6469758 bytes, checksum: 8fb64282f700578c1c218e811c71ec8c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
誌謝i 摘要iii Abstract v Contents vii List of Figures x List of Tables xiii 1 Introduction 1 1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Chapter Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Basic Principles 9 2.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 A. Retro-directive Array . . . . . . . . . . . . . . . . . . 10 B. Reflect Array . . . . . . . . . . . . . . . . . . . . . . 11 C. Retro-nulling Array . . . . . . . . . . . . . . . . . . 12 D. Reflecto-nulling Array . . . . . . . . . . . . . . . . . 12 2.1.1 Matrix Formulations . . . . . . . . . . . . . . . . . . . . . . . 13 A. Retro-directive Array . . . . . . . . . . . . . . . . . . 15 B. Reflect Array . . . . . . . . . . . . . . . . . . . . . . 15 C. Retro-nulling Array . . . . . . . . . . . . . . . . . . 16 D. Reflecto-nulling Array . . . . . . . . . . . . . . . . . 17 2.2 90 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Folding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Linear Retro-directive Antenna Array 25 3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 General Structures . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 31 3.2 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Experimantal Verification . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 90 Hybrid Circuit . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.2 Retro-directive Antenna Arrays . . . . . . . . . . . . . . . . . 36 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Linear Retro- and Re ecto-nulling Antenna Array 47 4.1 Linear Reflecto-nulling Antenna Array . . . . . . . . . . . . . . . . . 47 4.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.2 Experimental Verification . . . . . . . . . . . . . . . . . . . . 51 4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 Linear Retro- and Reflecto-nulling Antenna Array . . . . . . . . . . . 52 4.2.1 Hybrid Circuits Design . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 General Structures . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 69 4.2.4 Circuits Implementation . . . . . . . . . . . . . . . . . . . . . 72 4.2.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Concluding Remarks 89 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 References 93 | |
| dc.language.iso | en | |
| dc.subject | 零點陣列 | zh_TW |
| dc.subject | 九十度耦合器 | zh_TW |
| dc.subject | 回波指向陣列 | zh_TW |
| dc.subject | nulling array | en |
| dc.subject | 90 degree hybrids | en |
| dc.subject | retro-directive array | en |
| dc.title | 兩個新型指向及零點陣列設計-使用九十度耦合器 | zh_TW |
| dc.title | Two Novel Designs of Directive and Nulling Arrays
Using 90◦ Hybrids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊雄(Chun-Hsiung Chen),鄭士康(Shyh-Kang Jeng),鍾世忠(Shyh-Jong Chung),曾昭雄(Chao-Hsiung Tseng) | |
| dc.subject.keyword | 九十度耦合器,回波指向陣列,零點陣列, | zh_TW |
| dc.subject.keyword | 90 degree hybrids,retro-directive array,nulling array, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 6.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
