請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43882
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 孫雅麗(Yeali S. Sun) | |
dc.contributor.author | Yi-Ting Lin | en |
dc.contributor.author | 林意婷 | zh_TW |
dc.date.accessioned | 2021-06-15T02:31:32Z | - |
dc.date.available | 2009-08-19 | |
dc.date.copyright | 2009-08-19 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-14 | |
dc.identifier.citation | [1] MUC-6. Muc-6. message understanding conference:
http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html [2] Message Understanding Conference Proceedings MUC-7 Table of Contents: http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_toc.html [3] 馮志偉, 『所指判定與文本連貫的計算機處理』,載「語言學問題論叢 第一輯」 ,三聯書局,2006年,100-145頁。 [4] 王厚峰,『指代消解的基本方法和實現技術』,中文信息學報, 2002年,16(6):9-17頁。 [5] 王厚峰,『漢語篇章的指代消解淺論』,語言文學應用,(4), 2004年,113-119頁。 [6] Jun Lang, Bing Qin, Ting Liu, Sheng Li.” Intra-document Coreference Resolution: The state of the art.”, Journal of Chinese Language and Computing, 2007, Vol.17(4):227-253. [7] K. van Deemter and R. Kibble. “On coreferring: coreference in muc and related annotation schemes.” Computational Linguistics, 2000, 26(4):629–637. [8] R. Witte and S. Bergler. “Fuzzy coreference resolution for summarization.” In: S. Harabagiu and R. Delmonte eds. Proc. of 2003 International Symposium on Reference,2003. [9] R. Witte, R. Krestel, and S. Bergler. “Context-based multi-document summarization using fuzzy coreference cluster graphs.” In: Proc. of Document Understanding Workshop at HLT-NAACL 2006. Brooklyn, New York, USA., 2006. [10] T. Morton. “Using coreference for question answering.” In: A. Bagga, B. Baldwin, and S. Shelton eds. ACL 1999: Workshop on Coreference and Its Applications. College Park, Maryland, USA: Association for Computational Linguistics, 1999, pp.85-89. [11] Soon, W. M., H. T. Ng & D. C. Y. Lim.” A machine learning approach to coreference resolution of noun phrases.” Computational Linguistics, 2001, 27(4):521–544. [12] Ng, V. & C. Cardie .” Improving machine learning approaches to coreference resolution.” In Proc. of ACL-02,2002, pp. 104–111. [13] Kehler, A., D. Appelt, L. Taylor & A. Simma .” The (non)utility of predicate-argument frequencies for pronoun interpretation.” In Proc. of HLT-NAACL-04, 2004, pp. 289–296. [14] Gildea, D. & D. Jurafsky.” Automatic labeling of semantic roles.” Computational Linguistics, 2002,28(3):245–288. [15] Carreras, X. & L. M` arquez . “Introduction to the CoNLL-2005 shared task: Semantic role labeling.” In Proc. of CoNLL-05,2005, pp. 152–164. [16] Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman & E. Ruppin .” Placing search in context: The concept revisited.”ACM Transactions on Information Systems, 2002,20(1):116–131. [17] Patwardhan, S., S. Banerjee & T. Pedersen. “SenseRelate : TargetWord – A generalized framework for word sense disambiguation.” In Proc. of AAAI-05,2005. [18] Kim, S. N. & T. Baldwin. “Automatic interpretation of noun compounds using WordNet similarity.” In Proc. of IJCNLP-05,pp. 945–956,2005. [19] Budanitsky, A. & G. Hirst .” Evaluating WordNet basedmeasures of semantic distance.” Computational Linguistics,2006, 32(1). [20] J. R. Hobbs, “Coherence and coreference.”, Cognitive Science, 3, 67-90, 1979. [21] J. Hobbs.”Resolving pronoun references.”Readings in natural language processing, 1986,pages 339–352. [22] Shalom Lappin and Herbert J. Leass.” An algorithm for pronominal anaphora resolution.” ComputationalLinguistics,1994, 20(4):535–561. [23] Jerry R. Hobbs. “Resolving pronoun references.”Lingua, 1978, 44:311–338. [24] Susan E. Brennan, Marilyn W. Friedman, and Carl J.Pollard.” A centering approach to pronouns.” In ACL’87, 1987, pages 155–162, Stanford, CA. [25] Barbara J. Grosz, Aravind K. Joshi, and ScottWeinstein.” Centering: A Framework for Modeling the Local Coherence of Discourse.” Computational Linguistics, 1995,21(2):203–225. [26] Joel R. Tetreault. “Analysis of Syntax-Based Pronoun Resolution Methods. “In ACL’99, 1999,pages 602–605, College Park, MA. [27] Joel R. Tetreault. “A corpus-based evaluation of centering and pronoun resolution.” Computational Linguistics, 2001, 27(4):507–520. [28] Michael Strube and Udo Hahn. “Functional Centering – Grounding Referential Coherence in Information Structure.” Computational Linguistics, 1999.,25(3):309–344. [29] Michael Strube. “Never look back: An alternative to Centering.” In COLING ’98, 1998,pages 1251–1257,Montreal, Canada. [30] Megumi Kameyama,1997. “Intrasentential Centering: A Case Study.” 1997 (in press). In Walker, M., A. Joshi, and E. Prince, eds., Centering Theory in Discourse, Oxford University Press, Oxford [31] Harksoo Kim, Jeong-Mi Cho, Jungyun SCO.” Anaphora Resolution using an Extended Centering Algorithm in a Multi-modal Dialogue System”, 1999. [32] Roxana Angheluta, Patrick Jeuniaux, Rudradeb Mitra, Marie-Francine Moens,” Clustering Algorithms for Noun Phrase Coreference Resolution.”, JADT 2004. [33] Claire Cardie and Kiri Wagstaff,” Noun Phrase Coreference as Clustering.”, Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, 82–89, Association for Computational Linguistics, 1999. [34] J. McCarthy and W. Lehnert. “Using decision trees for coreference resolution. “In: C.R. Perrault ed. Proc. of the Fourteenth International Joint Conference on Artificial Intelligence. Québec, Canada: Springer, 1995, 1050-1055. [35] V. Hoste and W. Daelemans. “Comparing learning approaches to coreference resolution. There is more to it than 'bias'.” In: C. Giraud-Carrier, R. Vilalta, and P. Brazdil eds. Proc. of the Workshop on Meta-Learning (held in conjunction with ICML-2005). Bonn, Germany: MIT Press, 2005,20-27. [36] K. Wagstaff. “Intelligent clustering with instance-level constraints” Ph.D. Thesis. Cornell University, 2002. [37] R. Mitkov, S. Lappin, and B. Boguraev. “Introduction to the special issue on computational anaphora resolution.” Computational Linguistics, 2001, 27(4):473-477. [38] D. Bean and E. Riloff. “Unsupervised learning of contextual role knowledge for coreference resolution.” In: S. Dumais, D. Marcu, and S. Roukos eds. Proc. of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics. Boston, Massachusetts, USA: Association for Computational Linguistics, 2007,297-304. [39] P. Elango. “Coreference resolution: A survey.” Project report of the course 'Advanced natural language processing' In computer science departments, university of Wisconsin Madison. 2006. [40] Brown, J. C., Frishkoff, G. A., and Eskenazi, M. “Automatic Question Generation for Vocabulary Assessment.” Proceedings of HLT/EMNLP '05 (Vancouver, Canada, October 2005), 819-826. 2005. [41] Crystal, David. “English as a Global Language, (Second Edition).” Cambridge University Press: 212. 2003. [42] Chen, C.Y., Liou, H. C and Chang, J.S. “FAST - An Automatic Generation System for Grammar Tests.” Proc. ACL 2006, Sydney, Australia, 2006. [43] Hoshino, A., and Nakagawa, H. “A real-time multiple-choice question generation for language testing. “ Proceedings of ACL '05 Workshop: Building Educational Applications Using Natural Language Processing (Ann Arbor, USA, June 2005), 17-20. 2005. [44] Hoshino, A., and Nakagawa, H. “A Cloze Test Authoring System and Its Automation.” H. Leung et al. (Eds.): ICWL 2007, LNCS 4823, pp. 252-263, 2208. 2005. [45] Kunichika, H., Urushima, M., Hirashima, T. and Takeuchi, A. “A Computational Method of Complexity of Questions on Contents of English Sentences and its Evaluation.” Proc. of ICCE02, Auckland, NZ, pp.97-101. 2002. [46] Liu, C-L., Wang, C-H., Gao, Z-M., and Huang, S-M. “Applications of Lexical Information for Algorithmically Composing Multiple-Choice Cloze Items.” Proceedings of ACL '05 Workshop: Building Educational Applications Using Natural Language Processing (Ann Arbor, USA, June 2005), 1-8. 2005. [47] Lin, Y.C., Sung, L.C., and Chen, M.C. “An Automatic Multiple-Choice Question Generation Scheme for English Adjective Understanding.” Workshop on Modeling, Management and Generation of Problems/Questions in eLearning, the 15th International Conference on Computers in Education (ICCE 2007), pages 137-142. 2007. [48] Lin, Y.C., Sung, L.C., and Chen, M.C. “The Design of Automatic Quiz Generation for Ubiquitous English E-Learning System.” The Technology Enhanced Learning Conference (TELearn 2007), pages 161-168. 2007. [49] Mitkov, R., and Ha, L. A. “Computer-Aided Generation of Multiple-Choice Tests.” Proceedings of HLT-NAACL '03 Workshop: Building Educational Applications Using Natural Language Processing (Edmonton, Canada, May 2003), 17-22. 2003. [50] Sumita, E., Sugaya, F., and Yamamoto, S. “Measuring Non-native Speakers’ Proficiency of English by Using a Test with Automatically-Generated Fill-in-the-Blank Questions.” Proceedings of ACL '05 Workshop: Building Educational Applications Using Natural Language Processing (Ann Arbor, USA, June 2005), 61-68. 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43882 | - |
dc.description.abstract | 整篇文章是透過名詞片語在貫穿整體文章的連貫性(coherence),當然電腦或聽者(hearer)要理解文章真正的文意,須透過代名詞與先行詞之間和名詞片語之間的確定動作才可以來完成。例如,在討論台灣、中國、美國、日本等貿易的文章中,語段(discourse)中可能會寫「中華民國」,後面可能會說「台灣」、「中華台北」等,還會提到「這個國家」、「她」等。這些表達方式都是現實世界中「中華民國」的不同表示方式,事實上,它們是指向同一實體。雖然人們可以毫無困難地區分文章中同一實體的不同表現方式,但對電腦來說,仍是非常困難的。在某種意義上來說,共同指向(coreference)在自然語言中存在著超鏈結的作用。一方面,它使得作者在撰寫文章時可以實現文章的連貫性。
在此我們利用共同指向決策方案來完成用以評估學習者文章理解的自動出題。我們將共同指向應用在自動出題上。利用共同指向對文章的關係處理,進而完成文章理解。在此我們使用三種出題型態:代名詞、虛擬代名詞和非代名詞。為了提高題目的困難度和區別力,我們使用共同指向完成的鏈結關係來產生正確和錯誤的選項。學習者需透過名詞片語共同指向的連結來完成文章的理解。在此我們使用策略來完成選項處理。正確選項是取出共同指向鏈結中離目標字最近的名詞片語為答案。而錯誤選項需要與目標字處在不同的共同鏈,但為了增進文章困難度和區別力,錯誤選項的一致性特徵需盡可能與目標字一致(例如:單複數、性別等等),用以混淆學習者。 | zh_TW |
dc.description.abstract | In this paper, we propose a multiple-choice question generation program based on coreference resolution for measuring learners’ comprehension of the article. The coreference of the entire article is accomplished by the connection of noun phrases referring to the same entity in the real world. We apply the coreference resolution to the issue of automatic question generation.
Here we have three types of target key: pronoun, pleonastic pronoun, and NP. In order to improve question difficulty and discrimination, we employ clusters’ relation of the coreference to generate the answer and distractor. If readers understand the article, they should know which noun phrases refer to the same entity in the real world. We generate the answers to the questions that are the closest NP of target words in a coreference chain. For discriminating non-proficiency readers form proficiency readers, the answer and distractor of the question are in the similar agreement features (e.g., Number, gender et al) to confuse readers. We generate the distractors of the questions occurring in coreference chains but the one target word occurs in are as similar as possible to the target word in the agreement features. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:31:32Z (GMT). No. of bitstreams: 1 ntu-98-R96725035-1.pdf: 2830014 bytes, checksum: 500b244340cb39a6df4cfad939ccc903 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Table of Contents
論文摘要 IV THESIS ABSTRACT V Table of Contents VI Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Computer Processing of Language 1 1.1.2 Co-reference vs. Anaphora 3 1.1.3 Research Domain of Coreference Resolution 8 1.2 Motivation and Objective 10 1.3 Problem Definition 12 1.4 Thesis Structure 14 Chapter 2 Related Work 15 2.1 Quiz Generation 16 2.1.1 Computer-Aided Generation of Multiple-Choice Tests 16 2.1.2 The Design of Automatic Quiz Generation for Ubiquitous English E-Learning System 17 2.1.3 FAST – An Automatic Generation System for Grammar Tests 20 2.2 Pronoun Resolution 22 2.2.1 Hobbs Algorithm 22 2.2.2 Centering Theory Algorithm 23 2.2.3 RAP (Resolution of Anaphora Procedure) Algorithm 24 2.3 Co-reference Resolution on Machine Learning Algorithm 25 2.3.1 Classification Algorithm 25 2.3.2 Clustering Algorithm 27 2.4 Co-reference Resolution with knowledge 28 2.4.1 Entire Optimization 28 2.4.2 Deep linguistics knowledge and background knowledge 30 2.4.3 Integration of linguistics model and probability learning model 31 Chapter 3 The Proposed Methodology 32 3.1 Pronoun and Non-pronoun Filters 33 3.2 Feature Selection 36 3.2.1 Appositive Feature 37 3.2.2 Equal Pattern Filter Feature 37 3.2.3 Number Agreement Feature 37 3.2.4 Animacy and Person Agreement Feature 38 3.2.5 Gender Agreement Feature 39 3.2.6 Semantic Class Feature 40 3.2.7 Exact String Match Feature 40 3.2.8 First token match (for organization or person) Feature 40 3.2.9 Prepositional phrases (for organization or person) Feature 40 3.2.10 Pleonastic Pronoun Detection Feature 41 3.2.11 Syntactic Filter on Pronoun-NP Coreference Feature 42 3.2.12 Lexical Anaphor Filter Feature 43 3.3 Non-Pronoun Resolution 44 3.4 Pronoun Resolution 45 3.5 Question Generation Method 48 3.5.1 Blank Target Type 49 3.5.2 Determine the answer 49 3.5.3 Collect the distracters 49 Chapter 4 Experiment 51 Chapter 5 Conclusion and Future Work 60 Reference 61 | |
dc.language.iso | en | |
dc.title | 以共同指向決策方案的自動多選題產生系統 | zh_TW |
dc.title | Automatic Multiple-Choice Question Generation based on Coreference Resolution | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳孟彰(Meng Chang Chen) | |
dc.contributor.oralexamcommittee | 陳建錦(Chien Chin Chen),張嘉惠(Chia-Hui Chang) | |
dc.subject.keyword | 連貫性,共同指向,自動出題,虛擬代名詞,非代名詞,共同指向鏈,一致性特徵, | zh_TW |
dc.subject.keyword | multiple-choice question generation, coreference resolution,automatic question,pleonastic pronoun,NP,distractor,target words,agreement features, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。