Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorChing-Wei Chengen
dc.contributor.author鄭景瑋zh_TW
dc.date.accessioned2021-06-15T02:31:28Z-
dc.date.available2012-08-19
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citationC. C. Aggarawal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, Fast algorithms for projected clustering, In Proceedings of the ACM SIGMOD International Conference on Management of Data, 1999, pp. 61-72.
C. C. Aggarawal and P. S. Yu, Finding generalized projected clusters in high dimensional spaces, In Proceedings of the ACM SIGMOD International Conference on Management of Data, 2000, pp. 70-81.
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high dimensional data, In Proceedings of ACM SIGMOD International Conference on Management of Data, 1998, pp. 94-105.
A. Assareh, M. H. Moradi, and L. G. Volkert, A hybrid random subspace classifier fusion approach for protein mass spectra classification, In Proceedings of International Conference on Computer Science, Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 2008. pp. 1-11.
I. Assent, R. Krieger, E. Müller, and T. Seidl, DUSC: Dimensionality unbiased subspace clustering, In Proceedings of IEEE International Conference on Data Mining, 2007, pp. 409-414.
Y. Bao, Y. Lu, and J. Zhang, Forecasting stock price by SVMs Regression, In
Proceedings of International Conference on Computer Science, Artificial Intelligence: Methodology, Systems, and Applications, vol. 3192, 2004, pp.295-303.
H. Bischof, A. Leonardis, and F. Pezzei, A robust subspace classifier, In Proceedings of IEEE International Conference on Pattern Recognition, vol. 1, 1998, pp. 114-116.
R. Bracewell and P. B. Kahn, The fourier transform and its applications, American Journal of Physics, vol. 34, 1966, pp. 712-712.
CNNMoney, http://money.cnn.com/
F. Camastra and M. Filippone, SVM-based time series prediction with nonlinear dynamics methods, In Proceedings of International Conference on Computer Science, Knowledge-Based Intelligent Information and Engineering Systems, vol. 4694, 2007, pp. 300-307.
C. C. Chang and C. J. Lin, LIBSVM: A library for support vector machines, 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm/
C. H. Cheng, A. W. Fu, and Y. Zhang, Entropy-based subspace clustering for mining numerical data, In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp. 84-93.
D. Y. Chiu and P. J. Chen, Applying dynamic fuzzy model in combination with support vector machine to explore stock market dynamism, In Proceedings of International Conference on Computer Science, Adaptive and Natural Computing Algorithms, vol. 4432, 2007, pp. 246-253.
Dow Jones Indexes, http://www.djindexes.com/
W. Dong and W. W. Feng, Application of support vector machines regression in
prediction shanghai stock composite index, Wuhan University Journal of Natural Sciences, vol. 8, 2003, pp. 1126-1130.
R. D. Edwards and J. Magee, Technical Analysis of Stock Trends, Springfield, Massachusetts, 1966, 5th edition.
Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, In Proceedings of International Conference on Machine Learning, 1996, pp. 148-156.
Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, vol. 55, 1997, pp. 119-139.
V. V. Gavrishchaka and S. Banerjee, Support vector machine as an efficient framework for stock market volatility forecasting, In Proceedings of International Conference on Computational Management Science, vol. 3, 2006, pp. 147-160.
M. Glomba, and U. Markowska-Kaczmar, IBUSCA: A grid-based bottom-up subspace clustering algorithm, In Proceedings of International Conference on Intelligent Systems Design and Application, 2006, pp. 671-676.
S. Goil, H. Nagesh, and A. Choudhary, Mafia: Efficient and scalable subspace clustering for very large data sets, Technical Report, Northwestern University, 1999.
S. Hotta, Local subspace classifier with transform-invariance for image classification, In Proceedings of the ACM IEICE International Conference on Information and Systems, vol. E91-D, 2008, pp. 1756-1763.
S. C. Huang and H. W. Wang, Combining time-scale feature extractions with SVMs for stock index forecasting, In Proceedings of International Conference on Computer Science, Neural Information, vol. 4234, 2006, pp.390-399.
M. F. Hussin, M. S. Kamel, and M. H. Nagi, An efficient two-level SOMART document clustering through dimensionality reduction, In Proceedings of International Conference on Computer Science, Neural Information Processing, vol. 3316, 2004, pp. 158-165.
D. Jiang, C. Tang, and A. Zhang, Cluster analysis for gene expression data: a survey, In Proceedings of IEEE International Conference on Knowledge and Data Engineering, vol. 16, 2004, pp. 1370-1386.
H. T. Kam, The random subspace method for constructing decision forests, In Proceedings of IEEE International Conference on Pattern Analysis and Machine Intelligence, 1998, pp. 832-844.
K. J. Kim, Financial time series forecasting using support vector machines, Journal of Neurocomputing, vol. 55, 2003, pp. 307-319.
S. Kotsiantis and P. Pintelas, Logitboost of simple Bayesian classifier, Journal of Informatica, vol. 29, 2005, pp. 53-59.
S. Kotsiantis, E. Athanasopoulou, and P. Pintelas, Logitboost of multinomial Bayesian classifier for text classification, In Proceedings on International Review on Computers and Software, vol. 1, 2006, pp. 1-8.
H. P. Kriegel, P. Kröger, M. Renz, and S. Wurst, A genetic framework for efficient subspace clustering of high-dimensional data, In Proceedings of IEEE International Conference on Data Mining, 2005, pp. 250-257.
J. Laaksonen and E. Oja, Classification with learning k-nearest neighbors, In Proceedings of International Conference on Neural Networks, vol. 3, 1996, pp. 1480-1483.
J. Laaksonen, Local subspace classifier, In Proceedings of International Conference on Computer Science, Artificial Neural Networks, vol. 1327, 1997, pp. 637-642.
J. Laaksonen, M. Aksela, and E. Oja, Adaptive local subspace classifier in on-line recognition of handwritten characters, In Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1999, pp. 2812-2815.
S. T. Li and S. C. Kuo, Knowledge discovery in financial investment for forecasting and trading strategy through wavelet-based SOM networks, Expert Systems with Applications, vol. 34, 2008, pp. 935-951.
H. P. Luhn, Stop words, http://www.dcs.gla.ac.uk/idom/ir_resources/
linguistic_utils/stop_words
S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis: A survey, In Proceedings of IEEE International Conference on Computational Biology and Bioinformatics, vol. 1, 2004, pp. 24-45.
S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999, 2nd edition.
I. Mani, Recent developments in text summarization, In Proceedings of International Conference on Information and Knowledge Management, 2001, pp. 529-531.
A. McCallum and K. Nigam, A comparison of event models for naïve bayes text classification, In AAAI-98 Workshop on Learning for Text Categorization, 1998.
L. Nanni, Multi-resolution subspace for financial trading, Journal of Pattern Recognition, vol. 27, 2006, pp. 109-115.
D. Newman, S. Hettich, C. Blake, and C. Merz, UCI repository of MLDBs, 1998, http://archive.ics.uci.edu/ml/
M. F. Porter, An algorithm for suffix stripping, 1980, pp. 130-137, http://tartarus.org/~martin/PorterStemmer/
G. Potamias, Knowledgeable clustering of microarray data, In Proceedings of International Conference on Computer Science, Biological and Medical Data Analysis, vol. 3337, 2004, pp. 491-497.
C. Qu, Y. Li, J. Zhu, P. Huang, R. Yuan, and T. Hu, Term weighting evaluation in bipartite partitioning for text clustering, In Proceedings of International Conference on Computer Science, Information Retrieval Technology, vol. 4993, 2008, pp. 393-400.
R. Rosipal, M. Girolami, L. Trejo, and A. Cichocki, Kernel PCA for feature extraction and de-noising in non-linear regression, In Proceedings of International Conference on Computer Science, Neural Computing and Applications, 2001, pp. 231-243.
G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval, Journal of Information Processing and Management, vol. 24, 1988, pp. 513-523.
K. Sequeira and M. Zaki, SCHISM: A new approach for interesting subspace mining, In Proceedings of IEEE International Conference on Data Mining, 2004, pp. 186-193.
R. S. Stankovic and B. J. Falko0.wski, The Haar wavlet transform: Its status and achievements, Journal of Computers and Electrical Engineering, vol. 29, 2003, pp. 25-44.
X. Sui, Q. Hu, D. Yu, Z. Xie, and Z. Qi, A hybrid method for forecasting stock market trend using soft-thresholding de-noise model and SVM, In Proceedings of International Conference on Computer Science, Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, vol. 4482, 2007, pp. 387-394.
F. E.H. Tay and L. Cao, Application of support vector machines in financial time series forecasting, Journal of International Journal of Management Science, vol. 29, 2001, pp. 309-317.
T. B. Trafalis and H. Ince, Support vector machine for regression and applications to financial forecasting, In Proceedings of IEEE International Conference on Neural Networks, vol. 6, 2000, pp. 348-353.
P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, In Proceedings of International Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, pp. 511-518.
Y. R. Wang, Frequent subspaces mining, Master Thesis, National Taiwan University, 2008.
K. G. Woo and J. H. Lee, FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting, PhD Thesis, Korea Advanced Institute of Science and Technology, 2002.
J. Yang, W. Wang, H. Wang, and P. Yu, δ-clusters: Capturing subspace correlation in a large data set, In Proceedings of International Conference on Data Engineering, 2002, pp. 517-528.
L. Yu, S. Wang, and K. K. Lai, Mining stock market tendency using GA-based support vector machines, In Proceedings of International Conference on Computer Science, Internet and Network Economics, vol. 3828, 2005, pp. 336-345.
B. Zhang, H. Ko, and Y. Gao, Learning kernel subspace classifier, In Proceedings of Internation Conference on Computer Science, Advances in Biometrics, vol. 4642, 2007, pp. 299-308.
Z. Y. Zhang, C. Shi, S. L. Zhang, and Z. Z. Shi, Stock time series forecasting using support vector machines employing analyst recommendations, In Proceedings of International Conference on Computer Science: Advances in Neural Networks, vol. 3973, 2006, pp. 452-457.
Y. Zhao, G. Wang, Y. Yin, and G. Xu, Mining maximal local conserved gene clusters from microarray data, In Proceedings of International Conference on Computer Science, Advanced Data Mining and Applications, vol. 4093, 2006, pp. 356-363.
D. Zhora, Evaluating performance of random subspace classifier on ELENA classification database, In Proceedings of International Conference on Computer Science, Artificial Neural Networks: Formal Models and Their Applications, 2005, pp. 343-349.
D. V. Zhora, Financial forecasting using random subspace classifier, In Proceedings of International Conference on Neural Networks, vol. 4, 2004, pp. 2735-2740.
D. V. Zhora, Data preprocessing for stock market forecasting using random subspace classifier network, In Proceedings of International Conference on Neural Networks, vol. 4, 2005, pp. 2549-2554.
D. Zou, Local subspace classifier in reproducing kernel Hilbert space, In Proceedings of International Conference on Computer Science, Advances in Multimodal Interfaces, vol. 1948, 2000, pp. 434-441.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43880-
dc.description.abstract隨著資料量越來越大,利用所有資料維度的分類方法並不可行,因此用子空間建構分類器的概念越來越受到矚目。因為前人的研究只利用隨機或部份的子空間來做分類,所以本篇論文提出一個「頻繁子空間之分類器」,以產生出所有可能的子空間,並利用這些子空間建構一個分類器。我們所提出的方法主要包括三個階段。首先,我們使用小波轉換將資料的維度下降。然後,使用閾值篩選出所有可能的頻繁二維子空間,並用深度優先搜尋法找出高維度的頻繁子空間。最後,利用AdaBoost選出重要的子空間以建構一個組合分類器。因為我們的方法可將所有可能的子空間列入考慮,所以有更多的機會建構一個效能不錯的分類器。實驗結果顯示,不管在UCI資料或股市資料中,我們所提出的方法皆優於SVM和LogitBoost。zh_TW
dc.description.abstractWith the amount of the data increasing rapidly, it is infeasible to consider all the dimensions of the data to perform classification. Thus, constructing a classifier based on subspaces has attracted more and more attention. The previously proposed methods used randomly-generated or some subspaces to construct a classifier. Therefore, in this thesis, we propose a hybrid classification method, called FSC (Frequent subspace classifier), to generate all potential subspaces and utilize these subspaces to construct a classifier. Our proposed method consists of three phases. First, we apply the discrete wavelet transform to reduce the dimensions of feature vectors. Next, we employ the frequent subspaces mining method to derive all potential subspaces. Finally, we exploit AdaBoost to select the significant subspaces from the potential subspaces derived to construct an ensemble classifier. Since the FSC generates all potential subspaces and selects the subspaces based on the maximum entropy reduction, it provides more opportunities to construct an effective classifier. The experiment results show that the FSC outperforms the SVM and LogitBoost in both UCI and stock datasets.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:31:28Z (GMT). No. of bitstreams: 1
ntu-98-R96725013-1.pdf: 484036 bytes, checksum: 4b33873afe6d1469752b4129ef1db7ce (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Preliminary Concepts 3
Chapter 3 The Proposed Method 5
3.1 Dimension Reduction 5
3.2 Frequent Subspaces Mining 6
3.2.1 Deriving frequent 2-subspaces 6
3.2.2 Deriving frequent k-subspaces 9
3.3 Subspace Selection 11
Chapter 4 Performance Evaluation 15
4.1 The UCI dataset 15
4.2 The CNN Financial News 17
Chapter 5 Conclusions and Future Work 24
References 25
dc.language.isoen
dc.subject子空間zh_TW
dc.subject分群zh_TW
dc.subject分類器zh_TW
dc.subjectAdaBoostzh_TW
dc.subjectclassifieren
dc.subjectAdaBoosten
dc.subjectclusteringen
dc.subjectsubspaceen
dc.title頻繁子空間之分類器zh_TW
dc.titleFrequent Subspace Classifieren
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉敦仁,陳彥良
dc.subject.keyword子空間,分群,分類器,AdaBoost,zh_TW
dc.subject.keywordsubspace,clustering,classifier,AdaBoost,en
dc.relation.page32
dc.rights.note有償授權
dc.date.accepted2009-08-17
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
472.69 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved