請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43879完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 閔明源 | |
| dc.contributor.author | Ting-Jui Chang | en |
| dc.contributor.author | 張庭瑞 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:31:26Z | - |
| dc.date.available | 2010-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | Bear, M. F., B. W. Connors, et al. (2007). Neuroscience : exploring the brain. Philadelphia, PA, Lippincott Williams & Wilkins.
Bernard, J. F., G. F. Huang, et al. (1994). 'The parabrachial area: electrophysiological evidence for an involvement in visceral nociceptive processes.' J Neurophysiol 71(5): 1646-60. Bourdeau, M. L., F. Morin, et al. (2007). 'Kv4.3-mediated A-type K+ currents underlie rhythmic activity in hippocampal interneurons.' J Neurosci 27(8): 1942-53. Burdakov, D., H. Alexopoulos, et al. (2004). 'Low-voltage-activated A-current controls the firing dynamics of mouse hypothalamic orexin neurons.' Eur J Neurosci 20(12): 3281-5. Chaijale, N. N., V. J. Aloyo, et al. (2008). 'A naloxonazine sensitive (mu1 receptor) mechanism in the parabrachial nucleus modulates eating.' Brain Res 1240: 111-8. Clark, F. M. and H. K. Proudfit (1991). 'The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry.' Brain Res 538(2): 231-45. Clark, F. M. and H. K. Proudfit (1991). 'The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry.' Brain Res 547(2): 279-88. Clark, F. M. and H. K. Proudfit (1991). 'Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception.' Brain Res 540(1-2): 105-15. Clark, F. M., D. C. Yeomans, et al. (1991). 'The noradrenergic innervation of the spinal cord: differences between two substrains of Sprague-Dawley rats determined using retrograde tracers combined with immunocytochemistry.' Neurosci Lett 125(2): 155-8. Connor, J. A. and C. F. Stevens (1971). 'Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma.' J Physiol 213(1): 31-53. Connor, J. A. and C. F. Stevens (1971). 'Voltage clamp studies of a transient outward membrane current in gastropod neural somata.' J Physiol 213(1): 21-30. Diochot, S., H. Schweitz, et al. (1998). 'Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4.' J Biol Chem 273(12): 6744-9. Fulwiler, C. E. and C. B. Saper (1984). 'Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat.' Brain Res 319(3): 229-59. Hayward, L. F. and R. B. Felder (1999). 'Electrophysiological properties of rat lateral parabrachial neurons in vitro.' Am J Physiol 276(3 Pt 2): R696-706. Herbert, H., M. M. Moga, et al. (1990). 'Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat.' J Comp Neurol 293(4): 540-80. Hermann, G. E. and R. C. Rogers (1985). 'Convergence of vagal and gustatory afferent input within the parabrachial nucleus of the rat.' J Auton Nerv Syst 13(1): 1-17. Holden, J. E. and J. A. Pizzi (2003). 'The challenge of chronic pain.' Adv Drug Deliv Rev 55(8): 935-48. Hunt, S. P. and P. W. Mantyh (2001). 'The molecular dynamics of pain control.' Nat Rev Neurosci 2(2): 83-91. Jhamandas, J. H., S. E. Aippersbach, et al. (1991). 'Cardiovascular influences on rat parabrachial nucleus: an electrophysiological study.' Am J Physiol 260(1 Pt 2): R225-31. Kandel, E. R., J. H. Schwartz, et al. (2000). Principles of neural science. New York, McGraw-Hill, Health Professions Division. Kim, J., K. Nakajima, et al. (2009). 'Orexin-A and ghrelin depolarize the same pedunculopontine tegmental neurons in rats: an in vitro study.' Peptides 30(7): 1328-35. Kim, J., D. S. Wei, et al. (2005). 'Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.' J Physiol 569(Pt 1): 41-57. Kobashi, M. and R. M. Bradley (1998). 'Differences in the intrinsic membrane characteristics of parabrachial nucleus neurons processing gustatory and visceral information.' Brain Res 781(1-2): 218-26. Koyama, S. and S. B. Appel (2006). 'A-type K+ current of dopamine and GABA neurons in the ventral tegmental area.' J Neurophysiol 96(2): 544-54. Liss, B., O. Franz, et al. (2001). 'Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription.' EMBO J 20(20): 5715-24. Loewy, A. D., J. H. Wallach, et al. (1981). 'Efferent connections of the ventral medulla oblongata in the rat.' Brain Res 228(1): 63-80. Malin, S. A. and J. M. Nerbonne (2000). 'Elimination of the fast transient in superior cervical ganglion neurons with expression of KV4.2W362F: molecular dissection of IA.' J Neurosci 20(14): 5191-9. Malin, S. A. and J. M. Nerbonne (2001). 'Molecular heterogeneity of the voltage-gated fast transient outward K+ current, I(Af), in mammalian neurons.' J Neurosci 21(20): 8004-14. Min, M. Y., Y. W. Wu, et al. (2008). 'Physiological and morphological properties of, and effect of substance P on, neurons in the A7 catecholamine cell group in rats.' Neuroscience 153(4): 1020-33. Mizusawa, A., H. Ogawa, et al. (1995). 'Role of the parabrachial nucleus in ventilatory responses of awake rats.' J Physiol 489 ( Pt 3): 877-84. Mlinar, B. and J. J. Enyeart (1993). 'Voltage-gated transient currents in bovine adrenal fasciculata cells. II. A-type K+ current.' J Gen Physiol 102(2): 239-55. Norgren, R. (1978). 'Projections from the nucleus of the solitary tract in the rat.' Neuroscience 3(2): 207-18. Norgren, R. and C. M. Leonard (1971). 'Taste pathways in rat brainstem.' Science 173(2): 1136-9. Norgren, R. and C. M. Leonard (1973). 'Ascending central gustatory pathways.' J Comp Neurol 150(2): 217-37. Norgren, R. and C. Pfaffmann (1975). 'The pontine taste area in the rat.' Brain Res 91(1): 99-117. Paxinos, G. and C. Watson (2005). The rat brain in stereotaxic coordinates. Amsterdam ; Boston, Elsevier Academic Press. Pertovaara, A. (2006). 'Noradrenergic pain modulation.' Prog Neurobiol 80(2): 53-83. Proudfit, H. K. (1988). 'Pharmacologic evidence for the modulation of nociception by noradrenergic neurons.' Prog Brain Res 77: 357-70. Proudfit, H. K. and F. M. Clark (1991). 'The projections of locus coeruleus neurons to the spinal cord.' Prog Brain Res 88: 123-41. Riazanski, V., A. Becker, et al. (2001). 'Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells.' J Physiol 537(Pt 2): 391-406. Russo, G., S. Masetto, et al. (1995). 'Isolation of A-type K+ current in hair cells of the frog crista ampullaris.' Neuroreport 6(3): 425-8. Sanguinetti, M. C., J. H. Johnson, et al. (1997). 'Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels.' Mol Pharmacol 51(3): 491-8. Schoppa, N. E. and G. L. Westbrook (1999). 'Regulation of synaptic timing in the olfactory bulb by an A-type potassium current.' Nat Neurosci 2(12): 1106-13. Shapiro, R. E. and R. R. Miselis (1985). 'The central neural connections of the area postrema of the rat.' J Comp Neurol 234(3): 344-64. Shibata, R., K. Nakahira, et al. (2000). 'A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells.' J Neurosci 20(11): 4145-55. Song, W. J. (2002). 'Genes responsible for native depolarization-activated K+ currents in neurons.' Neurosci Res 42(1): 7-14. Stuart, G. J., H. U. Dodt, et al. (1993). 'Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy.' Pflugers Arch 423(5-6): 511-8. Suzuki, R. and A. Dickenson (2005). 'Spinal and supraspinal contributions to central sensitization in peripheral neuropathy.' Neurosignals 14(4): 175-81. Suzuki, R., S. Morcuende, et al. (2002). 'Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways.' Nat Neurosci 5(12): 1319-26. Sved, A. F. (1986). 'Pontine pressor sites which release vasopressin.' Brain Res 369(1-2): 143-50. van der Kooy, D. and L. Y. Koda (1983). 'Organization of the projections of a circumventricular organ: the area postrema in the rat.' J Comp Neurol 219(3): 328-38. Wang, D., C. Sumners, et al. (1997). 'A-type K+ current in neurons cultured from neonatal rat hypothalamus and brain stem: modulation by angiotensin II.' J Neurophysiol 78(2): 1021-9. Ward, D. G. (1988). 'Stimulation of the parabrachial nuclei with monosodium glutamate increases arterial pressure.' Brain Res 462(2): 383-90. Yuan, W., A. Burkhalter, et al. (2005). 'Functional role of the fast transient outward K+ current IA in pyramidal neurons in (rat) primary visual cortex.' J Neurosci 25(40): 9185-94. Zidichouski, J. A., J. C. Easaw, et al. (1996). 'Glutamate receptor subtypes mediate excitatory synaptic responses of rat lateral parabrachial neurons.' Am J Physiol 270(5 Pt 2): H1557-67. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43879 | - |
| dc.description.abstract | 臂旁核(Parabrachial Nucleus)一般被認為與自律神經系統訊號的傳遞有關,對於腸胃道、臟器功能及痛覺的調控扮演著相當重要的角色。臂旁核又分為中臂旁核(Medial Parabrachial Nucleus, MPB)及側臂旁核(Lateral Parabrachial Nucleus, LPB),先前研究發現側臂旁核的神經軸突似乎有一部分會投射到橋腦的A7正腎上腺素細胞群中,但對於側臂旁核的神經細胞組成及特性還未有清楚的研究,所以我們想要研究側臂旁核區神經細胞的電生理特性,試著對這些細胞作分類,並嚐試找出投射到A7核區的細胞群。
我們先量測細胞的自發性放電反應,並給予適當的電刺激流程,記錄細胞放電的電訊號特徵。根據延遲放電與否和是否有過極化時的袋狀膜電位凹陷,記錄的細胞可分為四大類。結果顯示,這四群細胞在動作電位振幅、膜電阻及半波寬(Spike Half Width)的特性上並沒有顯著的差異,但在能引起動作電位的電流閾值(Rheobase)大小的項目上,各組之間均有顯著的差異。在自發性放電反應的記錄中,各細胞群內皆包含不會自發性放電、會規律自發性放電、會不規律自發性放電等三種細胞。 在細胞形態的部分,我們發現會延遲放電且有過極化時的袋狀膜電位凹陷的這一組,其細胞突起分布較為局部,而其他組別則有較長遠的分布,有機會投射到A7核區,且這些細胞多分布於側臂旁核的中側(medial)近前端。 | zh_TW |
| dc.description.abstract | Parabrachial nucleus (PBN) is involved in transmission of autonomic information. It is an important site for both visceral and gustatory afferent processing. It is also involved in the pain regulation of the descending pain pathway. The PBN has traditionally been separated into lateral (LPBN) and medial (MPBN), and a part of axons of LPB neuron seem to project to the NAergic A7 nucleus, which contains a group of noradrenergic cells and locates in the pons. However, the composition and electro-physiological characteristics were still unknown. Here, we study the intrinsic membrane characteristics of LPB neurons and try to separate these cells.
First we record the spontaneous firing pattern of LPB neurons, and then give different stimulation protocols to record their intrinsic property. The cells we record can be grouped into four categories by the criteria of the delay onset and the hyperpolarizing voltage sag. Among these four groups, there are no significant differences in resting membrane potential, spike amplitude and spike half-width. However,the difference of the rheobase are significant in every pair of group. Comparing the spontaneous firing pattern, cells in all groups contain all the firing patterns, include regular-spontaneous firing pattern, non-regular-spontaneous firing pattern and non-spontaneous firing pattern. In comparison of morphology, the neuron processes of the group that showed the prominent delay onset and the hyperpolarizing voltage sag spreaded locally, while other groups had longer ones and spread more close to the A7 nucleus. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:31:26Z (GMT). No. of bitstreams: 1 ntu-98-R96b41028-1.pdf: 5566863 bytes, checksum: 94356adef76a9497e5fa5a314103e98e (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
謝誌 I 中文摘要 III Abstract V Contents VII Figure Contents VIII Table Content VIII Introduction 1 The parabrachial nucleus 1 The ascending pain pathway and descending modulation of pain 3 Objectives 4 Materials and Methods 6 Slice preparation 6 Visualization of neurons in LPBN and electrophysiology 7 Drugs 9 Data analysis 9 Filling recorded neurons with biocytin and histochemistry 11 Results 13 Identification and recording of LPB neurons in longitudinal brainstem slices 13 A group of LPB neurons contains the prominent delay onset of action potential, and a group does not show this delay onset 14 LPB neurons can be grouped by the appearance of the delay onset and the hyperpolarizing voltage sag 15 The resting membrane potential and the input resistance of LPB neurons 16 Comparison of the firing frequency 17 Comparison of the spike properties 18 Morphological properties of the neurons in the LPB area 19 Discussions 22 Mophology and electrophysiology 22 The delay onset might be caused by the A-type K+ channels 23 The diverse neurons in LPBN 25 References 26 Tables 32 Figures and Legends 33 | |
| dc.language.iso | en | |
| dc.subject | 全細胞記錄 | zh_TW |
| dc.subject | 電生理特性 | zh_TW |
| dc.subject | 痛覺傳導 | zh_TW |
| dc.subject | 側臂旁核 | zh_TW |
| dc.subject | whole cell recording | en |
| dc.subject | LPBN | en |
| dc.subject | electrophysiological property | en |
| dc.subject | pain pathway | en |
| dc.title | 大鼠腦中側臂旁核區神經細胞電生理特性之探討 | zh_TW |
| dc.title | Electrophysiological Characterization of Neurons in Rat Lateral Parabrachial Nucleus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊琇雯,傅毓秀 | |
| dc.subject.keyword | 側臂旁核,電生理特性,痛覺傳導,全細胞記錄, | zh_TW |
| dc.subject.keyword | LPBN,electrophysiological property,pain pathway,whole cell recording, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
