請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43875完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮河 | |
| dc.contributor.author | Yu-Lung Chang | en |
| dc.contributor.author | 張雨農 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:31:18Z | - |
| dc.date.available | 2012-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-16 | |
| dc.identifier.citation | 1. 歐晉德(1986),地錨之設計基本理論及施工檢驗法。地工技術雜誌,第14期,4-15頁。
2. 林四川、吳文隆、周功台(1993),邊坡穩定分析程式 (STABL) 應用之探討。地工技術雜誌,第41期,12-27頁。 3. 中國土木水利工程學會(1998),地錨設計與施工準則暨解說。台北縣:中國土木水利工程學會。 4. 洪勇善 (1999) ,「土釘擋土結構之力學行為」,博士論文,國立台灣大學土木工程學系研究所。 5. 陳宏杰 (2000) ,「土釘擋土牆力學行為之探討」,碩士論文,國立台灣大學土木工程學系研究所。 6. 廖瑞堂(2001),山坡地護坡工程設計。台北:科技圖書。 7. 陳榮河、何嘉浚 (2003)。土釘擋土工法導論。地工技術雜誌,第98期,5-16頁。 8. 洪勇善 (2003) ,土釘加勁陡坡破壞機制及耐震行為。地工技術雜誌,第98期,17-26頁。 9. 吳淵洵與周南山 (2006) ,台灣山區道路邊坡災害及搶修處理工法之探討。台灣公路工程 ,32 (12) 。 10. 陳怡儂 (2007) ,「利用模型試驗探討顆粒性土壤邊坡滑動之行為」,碩士論文,國立台灣大學土木工程學系研究所。 11. 古家瑋 (2008) ,「顆粒性土坡模型之滑動與入滲破壞」,碩士論文,國立台灣大學土木工程學系研究所。 12. 林育崇 (2009) ,「面層加勁系統之邊坡模型試驗」,碩士論文,國立台灣大學土木工程學系研究所。 13. 張志銘 (2009) ,「顆粒性土壤邊坡滑動破壞之力學機制」,碩士論文,國立台灣大學土木工程學系研究所。 14. 馮高原 (2010) ,「錨碇織網系統邊坡加勁模型試驗」,碩士論文,國立台灣大學土木工程學系研究所。 15. 簡瑋男 (2010) ,「降雨引致不飽和顆粒性土壤邊坡破壞之模型試驗研究」,碩士論文,國立台灣大學土木工程學系研究所。 16. 交通部,http://www.motc.gov.tw/ 17. 經濟部水利署,http://www.wra.gov.tw 18. 蘭州新開元工程 http://www.xkykj.com 19. ASTM D422-63, “Standard Test Method for Particle-Size Analysis of Soil,” ASTM International, West Conshohocken, PA, USA. 20. ASTM D854-06, “Standard Test Method for Specific Gravity of Soil Solids by Water Pycnometer,” ASTM International, West Conshohocken, PA, USA. 21. ASTM D2216-05, “Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass,” ASTM International, West Conshohocken, PA, USA. 22. ASTM D2434-68, “Standard Test Method for Permeability of Granular Soils (Constent Head),” ASTM International, West Conshohocken, PA, USA. 23. ASTM D3080-04, “Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions ,” ASTM International, West Conshohocken, PA, USA. 24. ASTM D4253-00, “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using Vibratory Table ,” ASTM International, West Conshohocken, PA, USA. 25. ASTM D4491-99a, “Standard Test Method for Water Permeability of Geotextiles by Permittivity,” ASTM International, West Conshohocken, PA, USA. 26. ASTM D4595-86, “Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method,” ASTM International, West Conshohocken, PA, USA. 27. ASTM D4751-99a, “Standard Test Method for Determining Apparent Opening Size of a Geotextile,” ASTM International, West Conshohocken, PA, USA. 28. ASTM D5199-99, “Standard Test Method for Measuring the Nominal Thickness of Geosynthetics,” ASTM International, West Conshohocken, PA, USA. 29. ASTM D5261-92, “Standard Test Method for Measuring Mass Per Unit Area of Geotextiles,” ASTM International, West Conshohocken, PA, USA. 30. Adam, J., Urai, J. L.,Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., van der Zee, W., Schmatz, J, 2004, “Shear Localization and Strain Distribution during Tectonic Faulting-New Insights from Granular-Flow Experiments and High Resolution Optical Image Correlation techniques,” Journal of Structural Geology, No. 27, pp. 283-301. 31. British Standards Institute (BSI DD81) , 1989, British Standards Code of Practice for Ground Anchorages, England. 32. Buckingham, E., 1914, “On Physically Similar systems : Illustrations of the Use of Dimentional Equations,” Physical Review, Vol. 5, No. 4, pp. 345-376. 33. Christopher, B. R.,Fisher, G. R., and Holtz, R. D., 1990, “Filter Criteria Based on Pore Size Distribution,” Proceedings of the Fourth International Conference on Geotextiles, Las Vegas, Vol. 1, pp. 289-294. 34. Civil Master Group (http://www.civilmastergroup.com/) 35. Ghiassian, H., 1995, “Stabilization of Sandy Slopes with Anchored Geosynthetic Systems,” Ph.D. thesis, The University of Michigan, Ann Arbor, USA. 36. Ghiassian, H., Hryciw, R. D., and Gray, D. H., 1996, “Laboratory Testing Apparatus for Slopes Stabilized by Anchored Geosynthetics,” Geotechnical Testing Journal, GTJODJ, Vol. 19, No. 1, pp. 65-73. 37. Ghiassian, H., Hryciw, R. D., and Gray, D. H., 1997, “A Circular Arc Test for Soil-Geosynthetic Interface Strength,” Geotechnical Testing Journal, GTJODJ, Vol. 20, No. 4, pp. 407-413. 38. Ghiassian, H., Jalili, M., and Kasemi, D., 2009, “Model study of sandy slopes under uniform seepage and reinforced with anchored geosyntyhetics” Geosynthetics International, Vol. 16, No. 6, pp. 452-467. 39. Gray, D. H. and Sotir, R. B., 1996, “Biotechnical and Soil Bioengineering Slope Stabilization,” John Wiley and Sons, New York. 40. Hryciw, R. D. and Irsyam, M., 1992, “Pullout Stiffness of Elastic Anchors in Slope Stabilization Systems,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 118, No. 6, pp. 902-919. 41. Hughes, S. A., 1993, “Physical Models and Laboratory Techniques in Coastal Engineering,” World Scientific, Singapore. 42. John, N. W. M., 1987, Geotexeiles, Blackie and Sons, Ltd. 43. Koerner, R. M., 1984, “In-Situ Soil Stabilization Using Anchored Nets,” Proceedings, Conference on Low Cost and Energy Saving Construction Methods, Rio DeJaniero, Brazil, pp. 465-478. 44. Koerner, R. M., 2005, Designing with Geosynthetics, Prentice Hall, Engiewood Cliffs. 45. Lueptow, R. M., Akonur, A. and Shinbrot T., 2000,”PIV for Granular Flows,” Experiments in Fluids, Vol. 28, pp. 183-186. 46. Morgenstern, N. R. and Sangrey, D. A., 1978, Methods of Stability Analysis, In: “Landslides: Analysis and Control,” Edited by R. L. Schuster and R. J. Krizek, Transportation Research Board Special Report 176, NAS-NRC, Washington, D.C., pp. 151-171. 47. Nagagoshi, N., Yamada, N., Horie, N., and Tanaka, J., 2006, “Road Construction Considering Enviromental Protection,” International Ecological Engineering Conference Essays, Taipei, Taiwan, pp. 97-124. 48. PIVTEC GMBH, 2006, PIVview User Manual. 49. Pudasaini, S. P., Hsiau, S. S., Wang, Y., Hutter, K., 2005, “Velocity Measurements in Dry Granular Avalanches Using Particle Image Velocimetry Technique and Comparison with Theoretical Predictions,” Physics of Fluids, Vol. 17, No. 9. 50. Raffel, M.,Willert, C., and Kompenhans, J., 1998, “Particle Image Velocimetry – A Partical Guide,” Springer Verlag, Berlin. 51. Rocha, M., 1957, “The Possibility of Solving Soil Mechanics Problems by the Use of Models,”4th International Conference on Soil Mechanics and Foundation Engineering, London , Vol. 1, pp. 183-188. 52. Roscoe, K., 1968, “Soils and Model Tests,” Journal of Strain Analysis, Vol. 3, No. 1, pp. 57-64. 53. Schlosser, F. and Buhan, P., 1990, “Theory and Design Related to the Performance of Reinforced Soil Structures ,” Performance of Reinforced Soil Structures, Proceedings of the International Reinforced Soil Conference, British Geotechnical Society, pp. 1-14. 54. TECCO®, http://www.geobrugg.com 55. Tohari, A., Nishigaki, M. and Komatsu, M., 2007, “Laboratory Rainfall-Induced Slope Failure with Moisture Content Measurement,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 5, pp. 575-587. 56. Van Zaten, R. V., 1986, Geotextile and Geomembranes in Civil Engineering, Wiley and Sons, New York. 57. Vitton, S. J.and Hryciw, R. D., 1991, “Load Transfer Mechanisms in Anchored Geosynthetic Systems,” Ph.D. thesis, The University of Michigan, Ann Arbor. 58. Vitton, S. J., Harris, W. W., Whiteman, M. F., and Liang, R. Y., 1998, “Application of Anchored Geosynthetic Systems for In Situ Slope Stabilization of Fine-Grained Soils,” Transportation Research Record, No. 98-1297, pp. 96-101. 59. White, D. J., Take, W. A., and Bolton, M. D., 2003, “Soil Deformation Measurment Using Particle Image Velocity (PIV) and Photogrammetry,” Geotechnigue, Vol. 53, No. 2, pp. 619-631. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43875 | - |
| dc.description.abstract | 錨碇地工織網系統 (Acnchored Geotextile/Geonet System, AGS) 是一種結合地工織物與錨釘之保護邊坡的工法,其除了以錨釘增加潛在滑動面之穩定性外,並以錨碇力使舖設於坡面之織物產生張力,圍束住周圍土壤。此外,地工織物亦提供良好排水與阻止土壤流失之能力。
本研究針對AGS穩定邊坡的能力進行探討,即以不同之錨碇力、地工織物、土壤作為試驗變因,分別製作AGS模型邊坡,再施加滲流促成邊坡破壞並觀察破壞之情形。試驗之過程全程以質點速度儀(Particle Image Velocity, PIV)記錄,再利用所得之影像與數據作向量分析,定義出破壞區間,做為邊坡極限平衡穩定分析之參考。此外,亦藉由水壓計量測坡體內水壓之變化。 由試驗結果顯示,愈接近邊坡下方的錨釘,因受土體自重的影響,其需抵抗滑動之錨定力愈大。另外,地工織物愈緻密,雖強韌性提高,但也會導致滲透性較差,使得當有水流的影響時,造成土壤推擠情形明顯。又天然材料做的織物當受力時會產生局部縮頸現象,造成坡面土壤易產生堆積及阻塞織物之孔隙,使孔隙水壓力累積,進而導致邊坡的不穩定。滲透性越高之土壤,受滲流的影響較大,AGS錨碇阻抗較難發揮。而所有試驗的破壞皆為緩慢滑動而非瞬間潰散,同時,也未觀察到土壤從織物表面流出,此顯示即使AGS逐漸失效,也不致引起織物產生擴孔的現象,故仍能維持邊坡某種程度的穩定。 | zh_TW |
| dc.description.abstract | The anchored geotextile/geonet system (AGS) is a technique for slope protection. In the system, geotextile/geonet is placed on the slope to control soil loss and to provide drainage; while anchors are driven through the fabrics into the soil to stabilize potential failure planes. By combining these two elements, geotextiles and anchors, the AGS can develop a strong armoring network for protecting slopes. This technique has been put into practice through years with good results.
The main focus of this research was to investigate the effects of anchoring force distribution, fabric properties, and soil permeability on the AGS. Model slopes were established by using different anchoring forces, various geotextiles, and soils as testing variables. The slopes were triggered to fail by seepage. The image of the movement of soil particles was recorded by a particle image velocimetry (PIV) during the test. Water pressures at several locations in the slopes were monitored as well. These data provided references for slope stability analysis using limit equilibrium concept. The test results showed that the force in the anchor that was located near the bottom of a slope was high due to the effect of soil’s weight. Although a dense fabric has good tensile strength, its drainage function is also poor. As a result, seepage induced more obvious instability in the slope that used the dense fabric. Moreover, a natural geotextile tested was apt to induce necking phenomenon, which caused the soil to clog inside the geotextile. Consequently, the water pressure was built up and slope instability occurred. The slope consisted of more permeable soil was easier to be affected by a seepage flow. In this case, the beneficial from the AGS was less significant. In all the model tests, the slopes failed slowly rather than abruptly and no soil was observed being carried away through the geotextiles. This evidence demonstrated the capability of the AGS in maintaining slope stability, even though some anchors were already failed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:31:18Z (GMT). No. of bitstreams: 1 ntu-100-R98521117-1.pdf: 12410517 bytes, checksum: 31f9c2708bdd07ad0388cdddd872b15c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract Ⅱ 目錄 III 表目錄 V 圖目錄 VI 符號說明 XII 第一章 緒論 1 1.1前言 1 1.2研究方法 2 1.3研究內容 3 第二章 文獻回顧 11 2.1錨碇織網系統 11 2.1.1現地研究 12 2.1.2 錨碇織網力學系統與室內實驗 13 2.1.3 AGS 土壤-織網界面強度試驗 15 2.2 面層加勁系統 16 2.3 錨釘原理與設置 16 2.4 質點影像分析 17 2.5地下水滲流邊坡模型試驗 19 第三章試驗材料性質試驗 42 3.1 試驗土樣 42 3.1.1 物理性質 42 3.1.2 水力性質 43 3.1.3 力學性質 43 3.2加勁織物 44 3.2.1 物理性質 44 3.2.2 水力性質 44 3.2.3 力學性質 45 3.2.4 織物-土壤界面強度性質 46 3.3模型土釘 47 第四章 試驗設備及模型製作 69 4.1模型設計 69 4.1.1模型相似性分析 69 4.1.2模型建立 71 4.1.3砂箱與錨碇力構件 71 4.1.4量測儀器 72 4.2模型製作與試驗步驟 73 4.2.1鋼線錨碇模型試驗 73 4.2.2土釘錨碇模型試驗 75 第五章 試驗結果與分析 90 5.1鋼線錨碇試驗 90 5.1.1 70°含不透水底層邊坡試驗 91 5.1.2 50°均質邊坡試驗 96 5.2模型土釘錨碇試驗 98 5.2.1無保護40°均質邊坡試驗 98 5.2.2土釘錨碇40°均質邊坡試驗 100 5.3極限平衡分析 104 5.4綜合分析與討論 105 5.4.1錨碇力發揮位置之影響 105 5.4.2織物的影響 106 5.4.3對不同細粒料含量土壤適用性 106 第六章 結論與建議 146 6.1研究結論 146 6.2研究建議與未來研究方向 147 參考文獻 148 | |
| dc.language.iso | zh-TW | |
| dc.subject | 邊坡 | zh_TW |
| dc.subject | 模型試驗 | zh_TW |
| dc.subject | 地工織物 | zh_TW |
| dc.subject | 錨釘 | zh_TW |
| dc.subject | 滲透性 | zh_TW |
| dc.subject | model test | en |
| dc.subject | geotextiles | en |
| dc.subject | anchor | en |
| dc.subject | permeability | en |
| dc.subject | slope | en |
| dc.title | 以模型試驗探討錨碇地工織網系統之影響因素 | zh_TW |
| dc.title | Investigation of the Factors Affecting Anchored Geotextile/Geonet System by Model Tests | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 范正成,林三賢,張惠文 | |
| dc.subject.keyword | 邊坡,模型試驗,地工織物,錨釘,滲透性, | zh_TW |
| dc.subject.keyword | slope,model test,geotextiles,anchor,permeability, | en |
| dc.relation.page | 153 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 12.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
