請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43872完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余家利(Chia-Li Yu) | |
| dc.contributor.author | Chao-Yi Chen | en |
| dc.contributor.author | 陳朝義 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:31:12Z | - |
| dc.date.available | 2009-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | 1. Silman A.J., Pearson J.E.: Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 2002; 4(Suppl 3), S265–S272.
2. MacKay, K., Eyre, S., Myerscough, A., Milicic, A., Barton, A., Laval, S. et al.: Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom. Arthritis Rheum. 2002; 46, 632–639. 3. Gregersen, P.K., Silver, J., Winchester, R.J.: The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987; 30, 1205–1213. 4. Gregersen, P.K.: Pathways to gene identification in rheumatoid arthritis: PTPN22 and beyond. Immunol. Rev. 2005; 204, 74–86. 5. Remmers, E.F., Plenge, R.M., Lee, A.T., Graham, R.R., Hom, G., Behrens, T.W., et al.: STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 2007; 357(10), 977–986. 6. Plenge, R.M., Seielstad, M., Padyukov, L., Lee, A.T., Remmers, E.F., Ding, B. et al.: TRAF1-C5 as a risk locus for rheumatoid arthritis–a genomewide study. N. Engl. J. Med. 2007; 357(12), 1199–209. 7. Gabriel S.E.: The epidemiology of rheumatoid arthritis. Rheum. Dis. Clin. North Am. 2001; 27, 269–81. 8. Ebringer, A., Wilson, C.: HLA molecules, bacteria and autoimmunity. J. Med. Microbiol. 2000; 49, 305–11. 9. Krieg, A.M. A role for Toll in autoimmunity. Nat. Immunol. 2002; 3(5), 423–4. 10. Steiner, G., Smolen, J.S.: Autoantibodies in rheumatoid arthritis. In: Firestein, G.S., Panayi, G.S., Wollheim, F.A. Oxford University Press, Oxford (eds). 2 edn, 2006; pp. 193–198. 11. Bobacz, K., Sunk, I., Hofstaetter, J., Amoyo, L., Toma, C., Akira, S., et al.: Toll-like receptors and chondrocytes: the LPS induced decrease in cartilage matrix synthesis is dependent on the presence of Toll-like receptor-4 and is antagonized by bone morphogenetic protein-7. Arthritis Rheum. 2007 12. Rodriguez-Pinto, D.: B cells as antigen presenting cells. Cell Immunol. 2005; 238(2), 67–75. 13. Ravetch, J.V., Bolland, S.: IgG Fc receptors. Annu. Rev. Immunol. 2001; 19, 275–90. 14. Debets, J.M., Van der Linden, C.J., Dieteren, I.E., L.J., Buurman, W.A.: Fc-receptor cross-linking induces rapid secretion of tumor necrosis factor (cachectin) by human peripheral blood monocytes. J. Immunol. 1988; 141, 1197–201. 15. Nielen, M.M., van der Horst, A.R., van Schaardenburg, D., van der Horst-Bruinsma, I.E., van de Stadt, R.J., Aarden, L. et al.: Antibodies to citrullinated human fibrinogen (acf) have diagnostic and prognostic value in early arthritis. Ann. Rheum. Dis. 64 (Jan 7):(Epub ahead of print, 2005) 16. Nell, V., Machold, K.P., Stamm, T.A., Eberl, G., Heinzl, H., Uffmann, M. et al.: Autoantibody profiling as early diagnostic and prognostic tool for rheumatoid arthritis. Ann. Rheum. Dis. 2005; 64, 1731–1736. 17. Mattey, D.L., Dawes, P.T., Clarke, S., Fisher, J., Brownfield, A., Thomson, W. et al.: Relationship among the HLA-DRB1 shared epitope, smoking and rheumatoid factor production in rheumatoid arthritis. Arthritis Rheum. 2002; 47, 403–407. 18. van Gaalen, F.A., van Aken, J., Huizinga, T.W., Schreuder, G.M., Breedveld, F.C., Zanelli, E., et al.: Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum. 2004; 50, 2113–2121. 19. Folkman J.: Angiogenesis. In: Smolen J.S., Lipsky P.E. (eds) Targeted Therapies in Rheumatology, 2003; pp. 111–131. Martin Dunitz, London 20. Haringman, J.J., Oostendorp, R.L., Tak, P.P.: Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis. Expert Opin. Emerg. Drugs 2005; 10(2), 299–310 21. Szekanecz Z., Kim J., Koch A.E.: Chemokines. In: Smolen J.S., Lipsky P.E. (eds) Targeted Therapies in Rheumatology, 2003; pp. 345–357. Martin Dunitz, London 22. Morel J, Combe B. How to predict prognosis in early rheumatoidarthritis. Best Pract Res Clin Rheumatol. 2005; 19:137-46. 23. Verstappen SM, Poole AR, Ionescu M, et al. Radiographic joint damage in rheumatoid arthritis is associated with differences in cartilage turnover and can be predicted by serum biomarkers: an evaluation from 1 to 4 years after diagnosis. Arthritis Res Ther. 2006; 8:R31. 24. van der Heide A, Remme CA, Hofman DM, Jacobs JW, Bijlsma JW. Prediction of progression of radiologic damage in newly diagnosed rheumatoid arthritis. Arthritis Rheum. 1995; 38:1466–74. 25. Jansen LM, van der Horst-Bruinsma IE, van Schaardenburg D, Bezemer PD, Dijkmans BA. Predictors of radiographic joint damage in patients with early rheumatoid arthritis. Ann Rheum Dis. 2001; 60:924–7. 26. Quinn MA, Gough AK, Green MJ, et al. Anti-CCP antibodies measured at disease onset help identify seronegative rheumatoid arthritis and predict radiological and functional outcome. Rheumatology Oxford. 2006; 45:478-80. 27. Landewé R. Predictive markers in rapidly progressing rheumatoid arthritis. J Rheumatol Suppl. 2007; 80:8-15. 28. Tsao, B.P., et al., Evidence for linkage of a candiadate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest, 1997. 99(4):p725-31. 29. Hoffman, R. W., T cells in the pathogenesis of systemic lupus erythematosus. Front Biosci, 2001. 6: pD1369-78. 30. Louis, P. J. and R. Fernandes, Review of systemic lupus erythematosus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001. 91(5): p512-6. 31. Werth, V. P., Cutaneous lupus: insights into pathogenesis and disease classification. Bull NYU Hosp Jt Dis, 2007. 65(3): p200-4 32. Manzi, S., J. M. Ahearn, and J. Salmon, New insights into complement: a mediator of injury and marker of disease activity in systemic lupus erythematosus. Lupus, 2004. 13(5): p298-303. 33. Sleasman, J. W., The association between immunodeficiency and the development of autoimmune disease. Adv Dent Res, 1996. 10(1): p57-61. 34. Cairns, A. P., et al., Antinucleosome antibodies in the diagnosis of systemic lupus erythematosus. Ann Rheum Dis, 2003. 62(3): p272-3. 35. Kotzin, B. L., Systemic lupus erythematosus. Cell, 1996. 85(3): p303-6. 36. Hsiu-Ping Kuei, Y.-L.S., Chin-Cheng Lee and Chin-Cheng Chuang, Autoantibodies Associated with Renal Involvement in Patients with Systemic Lupus Erythematosus. J Biomed Lab Sci, 2006. Vol 18(No 1~4) 37. Tan, E. M., Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol, 1989. 44: p93-151. 38. Hylkema, M. N., et al., Clinical evaluation of a modified ELISA, using photobiotinylated DNA, for the detection of anti-DNA antibodies. J Immunol Methods, 1994. 170(1): p93-102. 39. Watson, R. M., et al., Neonatal lupus erythematosus. A clinical, serological and immunogenetic study with review of the literature. Medicine (Baltimore), 1984. 63(6):p362-78. 40. Sturgess, A., Recently characterized autoantibodies and their clinical significance. Aust N Z J Med, 1992. 22(3): p279-89. 41. Hachulla, E. and S. Dubucquoi, [Nuclear auto-antibodies: a useful tool for the diagnosis, the classification and the prognosis of systemic sclerosis ]. Rev Med Interne, 2004. 25(6): p442-7. 42. Alving, B. M., Diagnosis and management of patients with the antiphospholipid syndrome. J Thromb Thrombolysis, 2001. 12(1): p89-93. 43. Aderem, A. and D. M. Underhill, Mechanisms of phagocytosis in macrophages. Annu Rev Immunol, 1999. 17: p593-623. 44. Ehlers, M. R., CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect, 2000. 2(3): p289-94. 45. Denfeld, R. W., et al., In situ expression of B7 and CD28 receptor families in skin lesions of patients with lupus erythematosus. Arthritis Rheum, 1997. 40(5): p814-21. 46. Bretscher P. The two-signal model of lymphocyte activation twenty-one years later. Immunol Today. 1992; 13:74–76. 47. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994; 1:793–801. 48. Ip WK, Wong CK, Leung TF, Lam CW. Plasma concentrations of soluble CTLA-4, CD28, CD80 and CD86 costimulatory molecules reflect disease severity of acute asthma in children. Pediatr Pulmonol. 2006; 41(7):674-82. 49. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991; 174:561–9. 50. Wong CK, Ho AW, Tong PC, Yeung CY, Chan JC, Kong AP, Lam CW. Aberrant expression of soluble co-stimulatory molecules and adhesion molecules in type 2 diabetic patients with nephropathy. J Clin Immunol. 2008; 28(1):36-43. 51. Hock BD, O'Donnell JL, Taylor K, Steinkasserer A, McKenzie JL, Rothwell AG, Summers KL. Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens. 2006; 67(1):57-60. 52. Mills JA. Systemic lupus erythematosus. N Engl J Med 1994;330: 1871–9. 53. Kotzin BL. Systemic lupus erythematosus. Cell 1996;85:303–6. 54. Magistrelli G, Jeannin P, Herbault N et al. A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 1999;29:3596–602. 55. Oaks MK, Hallett KM, Penwell RT, Stauber EC, Warren SJ, Tector AJ. A native soluble form of CTLA-4. Cell Immunol 2000; 201:144–53. 56. Liu MF, Wang CR, Chen PC, Fung LL. Increased expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol 2003;57:568–72. 57. Hebbar M, Jeannin P, Magistrelli G et al. Detection of circulating soluble CD28 in patients with systemic lupus erythematosus, primary Sjogren’s syndrome and systemic sclerosis. Clin Exp Immunol 2004;136:388–92. 58. Abe K, Takasaki Y, Ushiyama C et al. Expression of CD80 and CD86 on peripheral blood T lymphocytes in patients with systemic lupus erythematosus. J Clin Immunol 1999;19:58–66. 59. Bijl M, Horst G, Limburg PC, Kallenberg CG. Expression of costimulatory molecules on peripheral blood lymphocytes of patients with systemic lupus erythematosus. Ann Rheum Dis 2001;60:523–6. 60. Nagase H, Okada Y. Proteinases and matrix degradation. In Kelley WN, Harris ED, Ruddy S, Sledge CB, editors. Textbook of rheumatology. Philadelphia: WB Saunders Company, 1997: 323–41. 61. Klimiuk PA, Yang H. Goronzy JJ, Weyand CM. Production of cytokines and metalloproteinases in rheumatoid arthritis is T cell dependent. Clin Immunol 1999;90:65–78. 62. Klimiuk PA, Sierakowski S, Latosiewicz R, Cylwik B, Skowronski J, Chwiecko J. Serum metalloproteinases and tissue inhibitors of metalloproteinases in different histological variants of rheumatoid arthritis. Rheumatology (Oxford) 2002;41:78–87. 63. Blann AD, Herrick , Jayson MIV. Altered levels of soluble adhesion molecules in rheumatoid arthritis, vasculitis and systemic sclerosis. Br J Rheumatol 1995;34:814–19. 64. Mojcik CF, Shevach EM. Adhesion molecules. A rheumatologic perspective. Arthritis Rheum 1997;40:991–1004. 65. Tokuhira M, Hosaka S, Volin MV, Haines GK 3rd, Katschke KJ Jr, Kim S, et al. Soluble vascular cell adhesion molecule 1 mediation of monocyte chemotaxis in rheumatoid arthritis. Arthritis Rheum 2000;43:1122–33. 66. Klimiuk PA, Sierakowski S, Latosiewicz R, Cylwik JP, Cylwik B, Skowronski J, et al. Soluble adhesion molecules (ICAM-1, VCAM-1, and E-selectin) and vascular endothelial growth factor (VEGF) in patients with distinct variants of rheumatoid synovitis. Ann Rheum Dis 2002;61:804–9. 67. Volin MV. Soluble adhesion molecules in the pathogenesis of rheumatoid arthritis. Curr Pharm Des 2005;11:633–53. 68. Paleolog EM. Angiogenesis: a critical process in the pathogenesis of RA – a role for VEGF? Br J Rheumatol 1996;35:917–20. 69. Brenchley PEC. Antagonising angiogenesis in rheumatoid arthritis. Ann Rheum Dis 2001;60:iii71–4. 70. Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 1995;376:517–19. 71. Kuuliala A, Eberhardt K, Takala A, Kautiainen H, Repo H, Leirisalo-Repo M. Circulating soluble E-selectin in early rheumatoid arthritis: a prospective five year study. Ann Rheum Dis 2002;61:242–6. 72. Pigott R, Needham LA, Edwards RM, Walker CA, Power C. Structural and functional studies of the activation antigen ELAM-1 using a panel of monoclonal antibodies. J Immunol 1991; 147:130-5. 73. Cronstein BN, Weissmann G. The adhesion molecules of inflammation. Arthritis Rheum 1993: 36:147-57. 74. Pallis M, Robson DK, Haskard DO, Powell RJ. Distribution of cell adhesion molecules in skeletal muscle from patients with systemic lupus erythematosus. Ann Rheum Dis 1993; 52:667-71. 75. Belmont HM, Buyon J, Giorno R, Abramson S. Up-regulation of endothelial cell adhesion molecules characterizes disease activity in systemic lupus erythematosus. Arthritis Rheum 1994; 37:376-83. 76. Klimiuk PA, Fiedorczyk M, Sierakowski S, Chwiecko J. Soluble cell adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) in patients with early rheumatoid arthritis. Scand J Rheumatol. 2007; 36(5):345-50. 77. Wong CK, Lit LC, Tam LS, Li EK, Lam CW. Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2005 Aug;44(8):989-94. 78. Spronk PE, Bootsma H, Huitema MG, Limburg PC, Kallenberg CG. Levels of soluble VCAM-1, soluble ICAM-1, and soluble E-selectin during disease exacerbations in patients with systemic lupus erythematosus (SLE); a long term prospective study. Clin Exp Immunol. 1994 Sep;97(3):439-44. 79. Mackenzie NM, New therapeutics that treat rheumatoid arthritis by blocking T-cell activation. Drug Discovery Today 2006 Oct; 11(19/20):952-956. 80. Karim MY, Pisoni CN, Khamashta MA, Update on immunotherapy for systemic lupus erythematosus─what’s hot and what’s not! Rheumatology 2009; 48:332-341. 81. Kaarela K, Kauppi MJ, Lehtinen KE., The value of the ACR 1987 criteria in very early rheumatoid arthritis. Scand J Rheumatol. 1995;24(5):279-81. 82. Nienhuis RL, Mandema E., A new serum factor in patients with rheumatoid arthritis; the antiperinuclear factor. Ann Rheum Dis. 1964 Jul;23:302-5. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43872 | - |
| dc.description.abstract | T細胞共同刺激分子群 (Co-stimulatory molecules)及細胞粘著分子(Cell adhesion molecules)在由T細胞及白血球所引起的發炎反應上扮演重要角色。本實驗針對16位活動性類風濕關節炎(rheumatoid arthritis,RA)、20位全身性紅斑狼瘡(Systemic Lupus Erythematosus,SLE)患者及8位正常人,利用酵素連結免疫吸附分析法(ELISA)分析比較其血清中可溶性T細胞共同刺激分子群(sCTLA-4, sCD28, sCD80, sCD86)及細胞粘著分子(sE-selectin, sICAM-1, sVCAM-1)的變化。
與正常人的血清樣本做對照比較,發現在活動性類風濕關節炎患者,統計上其血清中sCTLA-4的濃度明顯下降(p<0.05),且sCD80、sE-selectin、sICAM-1及sVCAM-1的濃度明顯上升(p<0.05)。也發現在全身性紅斑狼瘡患者,統計上其血清中sCTLA-4及sE-selectin的濃度明顯下降(p<0.05),sCD86的濃度明顯上升(p<0.05)。比較活動性類風濕關節炎及全身性紅斑狼瘡患者,顯示出活動性類風濕關節炎患者獨特的分子標記(Bio-Marker)變化,即血清中sCTLA-4的濃度下降,sCD80和三種adhesion molecules (sE-selectin、sICAM-1及sVCAM-1)的濃度上升。同時也顯示出全身性紅斑性狼瘡患者獨特的分子標記(Bio-Marker)變化,即血清中的sCTLA-4和sE-selectin的濃度下降,sCD86的濃度上升。 因此由本研究發現,可溶性T細胞共同刺激分子群及細胞粘著分子不正常的產生進而活化T細胞及白血球,可能是引起活動性類風濕關節炎及全身性紅斑狼瘡發生的重要途徑,且在活動性類風濕關節炎及全身性紅斑狼瘡上具有特異性。 | zh_TW |
| dc.description.abstract | Co-stimulatory molecules connecting with leukocyte adhesion molecules play an important role in responses to T lymphocyte and leukocyte-mediated inflammatory. The aim of the study was to analyze serum concentrations of soluble co-stimulatory molecules (sCTLA-4, sCD28, sCD80, sCD86) and soluble cell adhesion molecules (sE-selectin, sICAM-1, sVCAM-1) among 16 active rheumatoid arthritis (RA) patients, 20 Systemic Lupus Erythematosus (SLE) patients and 8 healthy controls. The analysis method was based on a quantitative sandwich enzyme-linked immunosorbent assay (ELISA).
Compared with healthy control subjects (all p<0.05), serum levels of sCTLA-4 was significantly lower in active RA patients, whereas sCD80, sE-selectin, sICAM-1 and sVCAM-1 were significantly higher. In SLE patients, serum levels of sCTLA-4 and sE-selectin were significantly lower whereas sCD86 was significantly higher when comparing with healthy control subjects (all p<0.05). In addition, the comparison of the serum levels of soluble co-stimulatory and cell adhesion molecules between active RA and SLE patients indicates the characteristics of active RA patients, that is the decreasing levels of sCTLA-4 and elevated levels of sCD80, sE-selectin, sICAM-1 and sVCAM-1. The comparison also indicates the characteristics of active SLE patients , that are the decreasing levels of sCTLA-4 and sE-selectin and elevated levels of sCD86. Therefore, the study indicates that the aberrant expression of soluble co-stimulatory and cell adhesion molecules activates T cells and leukocytes. And this may be the cause for the inflammation and has the distinctness in active RA and SLE patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:31:12Z (GMT). No. of bitstreams: 1 ntu-98-P96448013-1.pdf: 1272070 bytes, checksum: 4f90b8de81a8791dfb2ae98f3c3d3d80 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………… ……………………i
誌謝……………………………………………………………………………………ii 中文摘要…………………………………………………………………… ………..iii 英文摘要…………………………………………………………………… …......…iv 第一章 緒論…………………………………………………………………………1 一、前言………………..………………………………………………… ………1 二、類風濕性關節炎(Rheumatoid Arthritis)介紹……………………………4 三、全身性紅斑狼瘡(Systemic lupus erythematosus, SLE)介紹…….. ……9 四、T細胞共同刺激分子群 (Co-stimulatory molecules) ………………… ……13 五、細胞粘著分子(Cell Adhesion Molecules) …………………………….… …16 六、研究動機……………………………………………………………….... …18 第二章 實驗材料方法………………………………………………………......................……19 一、研究對象……………………………………………………………….……19 二、檢體收集………..……………………………………………………………19 三、材料方法…………………………………………………………………..…19 四、統計分析………………………………………………………………..……20 第三章 實驗結果…………………………………………………………….……21 一、正常人、活動性類風濕性關節炎及紅斑性狼瘡患者血清中 sCTLA-4之濃度………………………………………………………...…21 二、正常人、活動性類風濕性關節炎及紅斑性狼瘡患者血清中 sCD28之濃度…………………………………………………………...…22 三、正常人、活動性類風濕性關節炎及紅斑性狼瘡患者血清中 sCD80之濃度……………………………………………………………...22 四、正常人、活動性類風濕性關節炎及紅斑性狼瘡患者血清中 sCD86之濃度…………………………………………………………...…23 五、正常人、活動性類風濕性關節炎及紅斑性狼瘡患者血清中 sE-selectin之濃度…………………………………………………………24 六、正常人、活動性類風濕性關節炎及紅斑性狼瘡患者血清中 sICAM-1之濃度…………………………………………………………..24 七、正常人、活動性類風濕性關節炎及紅斑性狼瘡患者血清中 sVCAM-1之濃度……………………………………………………….…25八、活動性類風濕關節炎及全身性紅斑狼瘡患者血清中 Soluble costimulatory molecules及Soluble adhesion molecules濃度變化之異同…………………………………...….………26 第四章 討論………………………………………………………………………28 參考文獻…………………………………………………………………………..…34 圖表………………………………………………………………………………..…42 附錄……………………………………………………………..……………………53 圖表附錄 目錄 圖一. 類風濕性關節炎的病理機轉………………………………………...……42 圖二. CD28及CTLA-4調控T細胞的活化……………………………...……43 圖三. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sCTLA-4的濃度分佈……………………..…44 表一. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡 (SLE)患者血清中sCTLA-4濃度統計比較表…………………44 圖四. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sCD28的濃度分佈…………………………45 表二. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡 (SLE)患者血清中sCD28濃度統計比較表……………………45 圖五. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sCD80的濃度分佈……………………………46 表三. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡 (SLE)患者血清中sCD80濃度統計比較表……………….……46 圖六. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sCD86的濃度分佈……………………………47 表四. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sCD86濃度統計比較表………………………47 圖七. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sE-selectin的濃度分佈……………………..…48 表五. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sE-selectin濃度統計比較表……………….…48 圖八. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sICAM-1的濃度分佈…………………………49 表六. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡 (SLE)患者血清中sICAM-1濃度統計比較表……………….…49 圖九. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡(SLE)患者血清中sVCAM-1的濃度分佈………………….……50 表七. 正常人(Normal)、活動性類風濕性關節炎(aRA)及全身性紅 斑性狼瘡 (SLE)患者血清中sVCAM-1濃度統計比較表…………………50 表八 活動性類風濕性關節炎(aRA)及全身性紅斑狼瘡(SLE)患者 血清中Soluble costimulatory molecules及Soluble adhesion molecules濃度變化之異同………………………………………….………51 表九 本研究之活動性類風濕關節炎(aRA)及全身性紅斑狼瘡(SLE) 患者血清中 Soluble costimulatory molecules 及Soluble adhesion molecules濃度變化結果與文獻研究結果之異同比較………………………52 圖十. 針對類風濕關節炎疾病治療之作用標的位…………………………...……53圖十一. 現行針對全身性紅斑狼瘡疾病之免疫療法機制…………………...……54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 粘著因子 | zh_TW |
| dc.subject | 共同刺激因子 | zh_TW |
| dc.subject | adhesion molecules | en |
| dc.subject | soluble co-stimulatory factors | en |
| dc.title | 研究比較活動性類風濕關節炎及全身性紅斑狼瘡患者血清中
可溶性共同刺激因子及粘著因子的濃度 | zh_TW |
| dc.title | Comparison with the serum levels of soluble co-stimulatory factors and adhesion molecules in patients with active rheumatoid arthritis and systemic lupus erythematosus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡長祐,謝松洲 | |
| dc.subject.keyword | 共同刺激因子,粘著因子, | zh_TW |
| dc.subject.keyword | soluble co-stimulatory factors,adhesion molecules, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
