請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4386完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林浩雄(Hao-Hsiung Lin) | |
| dc.contributor.author | Shih-Chang Chen | en |
| dc.contributor.author | 陳世昌 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:41:59Z | - |
| dc.date.available | 2018-08-24 | |
| dc.date.available | 2021-05-14T17:41:59Z | - |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-07-21 | |
| dc.identifier.citation | [1] M. B. Thomas, W. M. Coderre, and J. C. Woolley, “Energy gap variation in GaAsxSb1-x alloys,” Phys. Status Solidi A 2, K141 (1970).
[2] F. Quochi, J. E. Cunningham, M. Dinu, and J. Shah, “Room temperature operation of GaAsSb/GaAs VCSELs at 1.29m,” Electron. Lett. 36, 2075 (2000). [3] O. Blum and J. F. Klem, “Characteristics of GaAsSb single-quantum-well-lasers emitting near 1.3m,” IEEE Photon. Technol. Lett. 12, 771 (2000). [4] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, et al., “Continuous-wave operation of 1.3-m GaAsSb/GaAs VCSELs,” Electron. Lett. 37, 566 (2001). [5] F. Quochi, D. C. Kilper, J. E. Cunningham, M. Dinu, and J. Shah, “Continuous-wave operation of a 1.3-m GaAsSb-GaAs quantum-well vertical-cavity surface-emitting laser at room temperature,” IEEE Photon. Technol. Lett. 13, 921 (2001). [6] P. W. Liu, M. H. Lee, H. H. Lin, and J. R. Chen, “Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy,” Electron. Lett. 38, 1354 (2002). [7] P. W. Liu, G. H. Liao, and H. H. Lin, “1.3m GaAs/GaAsSb quantum well lasers grown by solid source molecular beam epitaxy,” Electron. Lett. 40, 177 (2004). [8] M. Peter, N. Herres, F. Fuchs, K. Winkler, K. H. Bachem, and J. Wagner, “Band gaps and band offsets in strained GaAsSb on InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 74, 410 (1999). [9] M. W. Dvorak, C. R. Bolognesi, O. J. Pitts, and S. P. Watkins, “300 GHz InP/GaAsSb/InP double HBTs with high current capability and BVCEO ≧ 6V,” IEEE Electron Device Lett. 22, 361 (2001). [10] H. G. Liu, N. Tao, S. P. Watkins, and C. R. Bolognesi, “Extraction of the average collector velocity in high-speed “type-II” InP–GaAsSb–InP DHBTs,” IEEE Electron Device Lett. 25, 769 (2004). [11] D. L. Smith, “Strain-generated electric field in [111] growth axis strained-layer superlattice,” Solid State Commun. 57, 919 (1986). [12] E. A. Caridi, T. Y. Chang, K. W. Goossen, and L. F. Eastman, “Direct demonstration of a misfit strain-generated electric field in a [111] growth axis zinc-blende heterostructure,” Appl. Phys. Lett. 56, 659 (1990). [13] K. W. Goossen, E. A. Caridi, T. Y. Chang, J. B. Stark, D. A. B. Miller, and R. A. Morgan, “Observation of room-temperature blue shift and bistability in a strained InGaAs-GaAs <111> self-electro-optic effect device,” Appl. Phys. Lett. 56, 715 (1990). [14] B. W. Kim, J. H. Yoo, and Soo Hyung Kim, “An improved calculation model for analysis of [111] InGaAs/GaAs strained piezoelectric superlattices,” ETRI Journal 21, 65 (1999). [15] A. Chin, P. Martin, P. Ho, J. Ballingall, T. H. Yu, and J. Mazurowski, “High quality (111)B GaAs, AlGaAs, AlGaAs/GaAs modulation doped heterostructures and a GaAs/InGaAs/GaAs quantum well,” Appl. Phys. Lett. 59, 1899 (1991). [16] R. J. Fischer, and D. Vakhshoori, “Low threshold (111)B GaAs quantum well lasers and applications to coherent blue-green sources,” J. Vac. Sci. Technol. B 10, 986 (1992). [17] A. S. Pabla, J. L. Sanchez-Rojas, J. Woodhead, R. Grey, J. P. R. David, G. J. Rees, et al., “Tailoring of internal fields in InGaAs/GaAs multiwell structures grown on (111)B GaAs,” Appl. Phys. Lett. 63, 752 (1993). [18] S. S. Lu, and C. L. Huang, “Piezoelectric field effect transistor (PEFET) using In0.2Ga0.8As/Al0.35Ga0.65As/In0.2Ga0.8As/GaAs strained layer structure on (111)B GaAs substrate,” Electron. Lett. 30, 823 (1994). [19] Y. R. Chen, L. C. Chou, Y. J. Yang, and H. H. Lin, “Orientation-dependent phase separation of GaAsSb epilayers grown by gas-source molecular-beam epitaxy,” Thin Solid Films 520, 4486 (2012). [20] G. B. Stringfellow, “Miscibility gap and spinodal decomposition in III/V quaternary alloys of the type AxByC1-x-yD,” J. Appl. Phys. 54, 404 (1983). [21] M. F. Gratton, R. G. Goodchild, L. Y. Juravel, and J. Woolley, “Miscibility gap in the GaAsySb1-y system,” J. Electron. Mater. 8, 25 (1979). [22] R. E. Nahory, M. A. Pollack, J. C. de Winter, and K. M. Williams, “Growth and properties of liquid phase epitaxial GaAs1-x Sbx,” J. Appl. Phys. 48, 1607 (1977). [23] K. C. Rajkumar, P. Chen., and A. Madhukar, “A transmission electron microscope study of twin structure in GaAs/GaAs (111)B grown via molecular-beam epitaxy,” J. Appl. Phys. 69, 2219 (1991). [24] J. Nakamura, T. Mishima, M. H. Masui, M. Sawayanagi, S. P. Cho, M. Nishizawa, et al., “Chemical binding features for faultily stacked interfaces of GaAs{111},” J. Vac. Sci. Technol. B 16, 2426 (1998). [25] Y. Park, M. J. Cich, R. Zhao, P. Specht, and E. R. Weber, “Analysis of twin defects in GaAs (111)B molecular beam epitaxy growth,” J. Vac. Sci. Technol. B 18, 1566 (2000). [26] Y. R. Chen, L. C. Chou, Y. J. Yang, and H. H. Lin, “Twinning in GaAsSb grown on (111)B GaAs by molecular beam epitaxy,” J. Phys. D: Appl. Phys. 46, 035306 (2013). [27] C. Kittel: Introduction to Solid State Physics, 8th ed. (Wiley, U.S. 2004), Chap. 1. [28] 林奕亨, “以X光繞射儀研究(111)銻砷化鎵內的相分離與雙晶缺陷”, 國立台灣大學電子工程學研究所 (2014). [29] P. B. Hirsch, et al.: Electron Microscopy of Thin Crystals, 2nd ed. (Butterworths, U.K. 1977). [30] G. B. Stringfellow: Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd ed. (Academic Press, U.S. 1999), Chap. 3. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4386 | - |
| dc.description.abstract | 本論文利用HRXRD提出一套重新判定基板斜切方向的方法,並藉由{220} 360° phi角掃描來研究[111]B GaAsSb內部雙晶缺陷成長的結構特性。
首先,我們經由phi角掃描中{220}繞射點出現的位置,將樣品分為兩類,分別為類型1:phi=60°、180°和300°,以及類型2:phi=0°、120°和240°。接著,由於樣品基板有經過[001]方向斜切處理,在量測HRXRD前須先進行[111]向量的校正,我們藉此反推出樣品平放時的[111]方向及基板斜切方向[001],並推測基板表面因斜切處理產生的台階,會朝[001]反方向降階。最後,也討論了此判定方法可靠性。 在{220} 360° phi角掃描部份,我們觀察到隨著成長溫度降低,Sb成分比例會上升,雙晶缺陷密度也會提高,此顯示高Sb成分比例的晶體在成長時,會傾向藉由產生雙晶缺陷以釋放應力。此外,當雙晶密度逐漸提高,樣品的{220}繞射點寬度會急遽增加,其中(202)和(022)繞射點譜形會由對稱形狀轉變為不對稱,最後再變回對稱分布。我們認為因為雙晶區域受邊緣缺陷影響而傾斜後,會使{220}繞射點中的雙晶訊號偏移造成譜形改變。同時,也觀察到不對稱譜形的分布和基板斜切方向有關,並利用台階成長模型分析[1-1-1]、[-1 1-1]以及[-1-1 1]三種方向下成長的雙晶,其受台階影響而產生的偏轉效應,成功地解釋當雙晶密度中等時的{220}繞射點寬度不對稱變化。 | zh_TW |
| dc.description.abstract | In this work, we utilized the HRXRD measurement to recover the missing off-cut direction of substrates and qualitatively compared the twin defects density of [111]B GaAsSb samples to study its growth mechanism by the {220} 360° phi-scans.
First, we classified the samples into two categories by the phi angles of {220} diffraction points. The one is for phi= 60°, 180°, and 300°; the other is for phi= 0°, 120°, and 300°. Later, from the analyses of calibration angles of [111] vector, which is deviated from the sample normal direction under the substrate off-cut, we suggested that the surface steps of substrate would terrace down in the direction against to the [001]. In addition, the reliability of this re-determination method was also discussed. Second, in the {220} 360° phi-scan, we observed the twin defect density increases as the sample growth temperature decreases, which reveals that the formation of twin defects is good for strain releasing during the sample growth of high Sb composition. Furthermore, we found that the higher the twin defect density, the much broader the {220} diffraction peaks. We suggest that the broadening behavior is resulting from the shift of twin signals, which coincide with the original {220} diffraction points firstly, under the tilting of defects at twin domain boundaries. Also, we noticed that the broadenings of (202) and (022) points are asymmetric at first, becoming symmetric eventually. And, the asymmetric broadening is related to the substrate off-cut direction. Thus, the step-growth model was used successfully, in the regime of medium twin defect density, to explain the asymmetry of {220} line-shapes by examining the tilting influences coming from surface steps during the twin defect growth. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:41:59Z (GMT). No. of bitstreams: 1 ntu-104-R02941035-1.pdf: 3064213 bytes, checksum: 974772a6bb6f3035088ae038af15a82f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract iv 目錄 v 表目錄 vi 圖目錄 vii 1. 簡介 1 1.1. GaAsSb的應用價值 1 1.2. 研究動機 1 1.3. 論文架構 3 2. 原理與步驟 7 2.1. 試片製備 7 2.2. 雙晶特性簡介 8 2.3. X光繞射(X-Ray Diffraction, XRD) 9 2.3.1. XRD原理 9 2.3.2. HRXRD 360° ϕ角掃描量測細節 10 3. 結果與討論 16 3.1. 基板斜切方向判定 16 3.1.1. 樣品分類 16 3.1.2. 基板斜切方向判定之方法 17 3.1.3. 判定方法可靠性之探討 19 3.2. {220} ϕ角量測 21 3.2.1. {220} ϕ角量測繞射峰數目 21 3.2.2. {220}繞射點訊號寬度變化 22 3.2.3. 雙晶密度中等時的{220}繞射點不對稱譜形 24 4. 結論 37 5. 參考資料 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙晶缺陷 | zh_TW |
| dc.subject | 銻砷化鎵 | zh_TW |
| dc.subject | 台階成長模型 | zh_TW |
| dc.subject | 斜切基板 | zh_TW |
| dc.subject | 高解析X光繞射頻譜 | zh_TW |
| dc.subject | high resolution X-ray diffraction | en |
| dc.subject | GaAsSb | en |
| dc.subject | off-cut substrate | en |
| dc.subject | step-growth model | en |
| dc.subject | twin defect | en |
| dc.title | 利用X光繞射研究(111)B銻砷化鎵內雙晶缺陷生成的機制 | zh_TW |
| dc.title | Growth mechanism of twin defects in (111)B GaAsSb studied by X-ray diffraction spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 毛明華(Ming-Hua Mao),林光儀((Kuang-I Lin),張六文(Liu-Wen Chang) | |
| dc.subject.keyword | 銻砷化鎵,雙晶缺陷,高解析X光繞射頻譜,台階成長模型,斜切基板, | zh_TW |
| dc.subject.keyword | GaAsSb,twin defect,high resolution X-ray diffraction,step-growth model,off-cut substrate, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU201601086 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 2.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
