Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明新(Min-Shin Chen)
dc.contributor.authorChi-Che Chenen
dc.contributor.author陳祈澈zh_TW
dc.date.accessioned2021-06-15T02:30:33Z-
dc.date.available2010-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citation[1] Leitmann, G., 'On the e±casy of nonlinear control in uncertain linear systems,' J. Dynam. Syst. Meas. and contr., vol. 103, pp. 95-102, 1981.
[2] J. C. Willems, 'Almost invariant subspaces: an approach to high gain feedback design -
part I: almost controlled invariant subspaces,' IEEE Trans. Automat. Contr., vol. 26, pp. 235-252, 1981.
[3] J. C. Willems, 'Almost invariant subspaces: an approach to high gain feedback design -
part II: almost conditionally invariant subspaces,' IEEE Trans. Automat. Contr., vol. 27,
pp. 1071-1084, 1982.
[4] K.D. Young, 'Disturbance decoupling by high-gain feedback,' IEEE Trans. Automat. Contr., vol. 27, pp. 970-971, 1982.
[5] R. Marino, W. Respondek, and A.J. Van Der Schaft, 'Almost disturbance decoupling for
single-input single-output nonlinear systems,' IEEE Trans. Automat. Contr., vol. 34, pp.1013-1017, 1989.
[6] V. I. Utkin, 'Variable structure systems with sliding modes,' IEEE Trans. Autom. Control, vol. 22, pp. 212-222, 1977.
[7] J. Y. Hung, W. B. Gao, and J. C. Hung, 'Variable structure control: a survey,' IEEE
Trans. Ind. Electron., vol. 40, pp. 2-22, 1993.
[8] M. S. Chen, 'Uncertainty estimator,' Proceedings of the American Control Conference,
San Diego, pp. 2020 - 2024, 1990.
[9] M. S. Chen, 'Decentralized control of a class of large-scale systems by uncertainty esti-
mator,' Journal of Dynamic Systems, Measurement, and Control, vol. 115, pp. 7 - 11, 1993.
[10] K. Youcef-Toumi, and O. Ito, 'A time delay controller for systems with unknown dynamics,' Journal of Dynamic Systems, Measurement, and Control, vol. 112, no. 1, pp. 133-142, 1990.
[11] P. H. Chang, J. W. Lee, and S. H. Park, 'Time delay observer: a robust observer for nonlinear plants,' Journal of Dynamic Systems, Measurement, and Control, vol. 119, no. 3, pp. 521-527, 1997.
[12] A. Radke and Z. Gao, 'A survey of state and disturbance observers for practitioners,'
Proc. of the American Control Conference ACC/IEEE, pp. 5183 - 5188, 2006.
[13] M. Nakao, K. Ohnishi and K. Miyachi, 'A robust decentralized joint control based on
interference estimation,' Proc. IEEE Int. Conf. Robotics and Automation, pp. 326 V 331, 1987.
[14] H. S. Lee, and M. Tomizuka, 'Robust motion controller design for high-accuracy positioning systems,' IEEE Trans. Ind. Electron., vol. 43, ,No. 1, pp. 48 - 55, 1996.
[15] K. Ohnishi, M. Shibata, and T. Murakami, 'Motion control for advanced mechatronics,' IEEE/ASME Trans. Mechatronics, vol. 1, no. 1, pp. 56 - 67, 1996.
[16] T. Umeno, T. Kaneko, and Y. Hori, 'Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators,' IEEE Trans.
Ind. Electron., vol. 40, pp. 473 - 485, 1993.
[17] S. Komada, N. Machii and T. Hori, 'Control of redundant manipulators considering order of disturbance observer,' IEEE Trans. Ind. Electron., vol. 47, ,No. 2, pp. 413 - 420, 2000.
[18] Y. Choi, K. Yang, W. K. Chung, H. R. Kim, and I. H. Suh, 'On the robustness and performance of disturbance observers for second order systems,' IEEE Trans. Automatic
Control, vol. 48, pp. 315-320, 2003.
[19] H. Shim, and N. H. Jo, 'An almost necessary and su±cient condition for robust stability of closed-loop systems with disturbance observer,' Aotomatica, vol. 45, pp. 296 - 299, 2009.
[20] A. Tesfaye, H. S. Lee, and M. Tomizuka, 'A sensitivity optimization approach to design of a disturbance observer in digital motion control systems,' IEEE/ASME Trans. Mechatronics, vol. 5, No. 1, pp. 32 - 38, 2000.
[21] B. K. Kim and W. K. Chung, 'Advanced disturbance observer design for mechanical positioning systems,' IEEE Trans. Ind. Electron., vol. 50, No. 6, pp. 1207 - 1216, 2003.
[22] H. Wang, and S. Daley, 'Actuator fault diagnosis: an adaptive observer-based technique', IEEE Trans. Automatic Control, vol. 41, pp. 1073 - 1078, 1996.
[23] D. Haessig, and B. Friedland, 'Separate-bias estimation with reduced-order Kalman-filters', IEEE Trans. Automatic Control, vol. 44, pp. 983 - 987, 1998.
[24] J. L. Chang, 'Applying discrete-time proportional integral observers for state and disturbance estimation', IEEE Trans. Automatic Control, vol. 51, no. 5, pp. 814 - 818, 2006.
[25] C. Johnson, 'Accomodation of external disturbances in linear regulator and servomechanism problems', IEEE Trans. Automatic Control, vol. 16, no. 6, pp. 635 - 644, 1971.
[26] G. Hostetter, and J. S. Meditch, 'Observing systems with unmeasurable inputs ', IEEE Trans. Automatic Control, vol. 18, pp. 608 - 609, 1973.
[27] G. Hostetter, and J. S. Meditch, 'On the generalization of observers to systems with unmeasurable, unknown inputs ', Automatica, vol. 9, pp. 721 - 724, 1973.
[28] J. A. Profeta, W. G. Vogt, and M. H. Mickle, 'Disturbance estimation and compensation
in linear systems,' IEEE Trans. Aerosp. Electron. Syst., vol. 26, pp. 225 - 231, 1990.
[29] E. Schrijver, and J. V. Dijk, 'Disturbance observers for rigid mechanical systems: equivalence, stability, and design', Journal of Dynamic Systems, Measurement, and Control, vol. 124, pp. 539 - 548, 2002.
[30] Y. Park, and J. L. Stein, 'Closed-loop state and input ovserver for systems with unknown inputs', International J. Control, vol. 45, page 1121 - 1136, 1988.
[31] M. Hou, and P. C. Muller 'Design of observers for linear systems with unknown inputs', IEEE Trans. Automatic Control, vol. 37, pp. 871 - 875, 1992.
[32] C. S. Liu, and H. Peng, Inverse-dynamics based state and disturbance observers for lineartime-invariant systems, J. Dynamic Systems, Meaurement and Control, vol. 124, page 375- 381, 2002.
[33] M. Corless, and J. Tu, 'State and input estimation for a class of uncertain systems', Automaica, vol. 34, pp. 757 - 764, 1998.
[34] Y. Xiong, and M. Saif, 'Unknown disturbance inputs estimation based on a state functional observer design', Automaica, vol. 39, pp. 1389 - 1398, 2003.
[35] M. A, Duarte-Mermoud, and P. S. La Rosa, 'Designing SISO observers with unknown input', IMA J. Mathematical Control and Information, vol. 20, pp. 387 - 391, 2003.
[36] S. Kwon, and W. K. Chung, 'Combined synthesis of state estimator and perturbation observer', Journal of Dynamic Systems, Measurement, and Control, vol. 125, pp. 19 - 26, 2003.
[37] S. Kwon, and W. K. Chung, 'A discrete-time design and analysis of perturbation observer for moton control applications', IEEE Trans. Control Systems Technology, vol. 11, No. 3, pp. 399 - 407, 2003.
[38] J. Q. Han, 'A class of extended state observers for uncertain systems,' Control and Decision, vol. 10, no. 1, pp. 85 - 88, 1995, in Chinese.
[39] Z. Gao, Y. Huang and J. Han, 'An alternative paradigm for control system design,' Proc. IEEE Conf. Decision and Control, pp. 4578 - 4585, 2001.
[40] Z. Gao, 'Active disturbance rejection control: a paradigm shift in feedback control,' Proc. of the American Control Conference ACC/IEEE, pp. 2399 - 2405, 2006.
[41] C. T. Chen, 'Linear System Theory and Design', Oxford University Press, New York, 1984.
[42] F. L. Lewis, V. L. Syrmos, 'Optimal Control', 2nd Ed., John Wiley & Sons, 1995.
[43] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, 'Feedback Control Theory', Macmillan,
New York, 1992.
[44] K. Zhou, and J. C. Doyle, and K. Glover 'Robust and Optimal Control', Prentice Hall, 1996.
[45] K. Zhou, and J. C. Doyle, 'Essentials of Robust Control', Prentice Hall, 1998.
[46] B. D. O. anderson, and J. B. Moore, 'Optimal Control, Linear Quadratic Methods', Prentice Hall, Englewood Cliffs, Chapt. 5.2, 1989.
[47] T. Kailath, 'Linear Systems', Prentice Hall, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43851-
dc.description.abstract干擾觀測器可以達成即時線上觀測對系統的未知干擾。早期的干擾觀測器只能針對某些種類的干擾進行估測,在此篇論文中提出了一個新的頻域塑形觀測器。此種頻域塑形觀測器展現了一個類比的設計方法相對於回授控制系統的控制器設計。藉由此種類比設計方法的優勢,我們能夠藉由H∞的控制器設計技巧,來達成此種頻域塑形觀測器的系統化設計。此種觀測器建立在頻域設計上,不只考慮了估測的能力,同時兼顧了系統的不確定性與雜訊對系統的敏感度的影響,並且可以用來估測大部分的干擾。如果將此種觀測器運用在干擾抑制控制上的話,被控制的系統的行為將會相似於名義系統(nominal system),而不會受到外在干擾與系統的未知性的影響。zh_TW
dc.description.abstractA disturbance observer is to achieve on-line estimation of the unknown disturbance acting on a linear dynamic system. This thesis proposes a frequency shaping design of a disturbance observer that was originally proposed for estimation of special classes of disturbances. It is shown that the structure of the disturbance observer exhibits an analogy to that of a feedback control system. By taking advantage of this analogy, one can perform systematic frequency shaping re-design of the disturbance observer via the H∞ control techniques. The proposed design is a
frequency domain design that takes into account not only the estimation tracking ability, but also system uncertainties, and sensitivity with respect to measurement noise. The new design, unlike its ancestor, can be used to estimate most general disturbances encountered in the real world, including potentially unbounded disturbances. If one applied the proposed disturbance observer to the synthesis of disturbance rejection control, the controlled system is forced to behave as a nominal system without the interference of external disturbances or system uncertainties.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:30:33Z (GMT). No. of bitstreams: 1
ntu-98-D93522014-1.pdf: 1704416 bytes, checksum: 0813338690b5342e5b8000fb0209f3ce (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChinese Abstract I
English Abstract II
Index of Contents III
Index of Figures IV
Chapter 1. Introduction 01
Chapter 2. Disturbance Observer 05
Chapter 3. A Conventional DOB Design by
State-Space Method 12
Chapter 4. H∞ design of DOB 16
Chapter 4.1 H∞ DOB for Systems with Control 23
Chapter 5. H∞ disturbance observer design
for MIMO system 38
Chapter 6. Robust H∞ Disturbance Observer Design
for MIMO system 60
Chapter 7. Robust Disturbance Rejection Control
based on H∞ DOB 63
Chapter 8. Conclusion 77
Appendix 79
Appendix II 82
References 83
dc.language.isoen
dc.subject干擾估測zh_TW
dc.subject干擾觀測器zh_TW
dc.subject強健觀測器zh_TW
dc.subjectH∞控制zh_TW
dc.subject頻域塑形zh_TW
dc.subject多變數系統zh_TW
dc.subjectdisturbance observeren
dc.subjectmultivariable systemen
dc.subjectfrequency shapingen
dc.subjectH∞ controlen
dc.subjectrobust observeren
dc.subjectdisturbance estimationen
dc.titleH∞干擾觀測器設計zh_TW
dc.titleH∞ Disturbance Observer Designen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃衍任,高崇堯,譚俊豪,胡竹生
dc.subject.keyword干擾觀測器,干擾估測,強健觀測器,H∞控制,頻域塑形,多變數系統,zh_TW
dc.subject.keyworddisturbance observer,disturbance estimation,robust observer,H∞ control,frequency shaping,multivariable system,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2009-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved