請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43797
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 尹相姝(Hsiang-Shu Yin) | |
dc.contributor.author | Meng-Chien Chou | en |
dc.contributor.author | 周孟蒨 | zh_TW |
dc.date.accessioned | 2021-06-15T02:28:57Z | - |
dc.date.available | 2009-09-15 | |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-17 | |
dc.identifier.citation | 1. Adlkofer K, Lai C. 2000. Role of neuregulins in glial cell development. Glia 29(2):104-11.
2. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, and Jones EG. 1995. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. Gen. Psychiatry 52:258-266 3. Anton ES, Marchionni MA, Lee KF, Rakic P. 1997. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. 124(18):3501-10 4. Anton ES, Ghashghaei HT, Weber JL, McCann C, Fischer TM, Cheung ID, Gassmann M, Messing A, Klein R, Schwab MH, Kent Lloyd KC and Lai C. 2004. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nature Neuroscience 7:1319-1328 5. Bagossi P, Horvath G, Vereb G, Szollosi J, Tozser J. 2005. Molecular modeling of nearly full-length ErbB2 receptor. Biophys. J. 88:1354-1363. 6. Bao J,Wolpowitz D, Role LW and Talmage DA. 2003. Back signaling by the Nrg-1 intracellular domain. J. Cell Biol. 161:1133-1141. Bao J, Lin H, Ouyang Y, Lei D, Osman A, Kim TW, Mei L, Dai P, Ohlemiller KK and Ambron RT. 2004. Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat. Neurosci. 7:1250-1258. 7. Bernstein HG, Lendeckel U, Bertram Iris, Bukowska A, Kanakis D, Dobrowolny H, Stauch R, Krell D, Mawrin C, Budinger E, Keilhoff Ga and Bogerts B. 2006. Localization of neuregulin-1a(heregulin-a) and one of its receptors, ErbB-4 tyrosine kinase, in developing and adult human brain. Brain Research Bulletin 69:546-559 8. Bertram I, Hans-Gert B, Lendeckel U, Bukowska A, DobrowolnyH Kellhpff G, Kanakis D, Mawrin C, BielauH, Falkai P and Bogerts B. 2007. Immunohistochemical Evidence for Impaired Neuregulin-1 Signaling in the Prefrontal Cortex in Schizophrenia and in Unipolar Depression. Ann. N.Y. Acad. Sci. 1096: 147–156. 9. Bogerts B, Hantsch J, Herzer M. 1983. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 18:951-969 10. Brockes JP, Lemke GE, and Balzer DR. 1980. Purification and preliminary characterization of a glial growth factor from the bovine pituitary. J. Biol. Chem. 255:8374-8377. 11. Burden S, Yarden Y. 1997. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 18:847-55. 12. Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, and Marty A. 2000. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci 21, 97(24):13372-13377 13. Carlsson A, Lindquist M. 1963. Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140-144 14. Calaora V, Rogister B, Bismuth K, Murray K, Brandt H, Leprince P, Marchionni M and Dubois-Dalcq M. 2001. Neuregulin Signaling Regulates Neural Precursor Growth and the Generation of Oligodendrocytes In Vitro. The Journal of Neuroscience, July 1, 2001, 21(13):4740–4751 15. Chemerinski E, Nopoulos PC and Crespo-Facorro B. 2002. Morphology of the ventral frontal cortex in schizophrenia: relationship with social dysfunction. Biol Psychiatry 52:1-8. 16. Corfas G, Rosen KM, Aratake H, Krauss R, Fischbach GD. 1995. Differential expression of ARIA isoforms in the rat brain. Neuron 14:103-115 17. Davis KL, Kahn RS, Ko G and Davidson M. 1991. Dopamine in schizophrenia: A review and reconceptualization. Am. J. Psychiatry 148:1474-1486 18. Deacon RMJ, Penny C, Rawlins JNP. 2003. Effects of medial prefrontal cortex cytotoxic lesions in mice. Behavioural Brain Research 139:139-155 19. Erickson SL, O’Shea KS, Ghaboosi N, Loverro L, Frantz G, Bauer M, Lu LH and Moore MW. 1997. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2 and heregulin deficient mice. Development 124:4999-5011. 20. Esper RM, Pankonin MS and Loeba JA. 2006. Neuregulins: Versatile growth and differentiation factors in nervous system development and human disease. Brainresearch reviews 51:161-175 21. Evan, G.I. and Littlewood, T.D. 1993. The role of c-myc in cell growth. Curr. Opin. Genet. 3:44-49. 22. Falls DL. 2003. Neuregulins: functions, forms, and signaling strategies. Experimental Cell Research 284:14-30 23. Falls DL, Harris DA, Johnson FA, Morgan MM, Corfas G and Fischbach GD. 1990. ARIA: A protein that may regulate the accumulation of acetylcholine receptors at developing chick neuromuscular junctions. CSH Symp. Quant. Biol. 55:397-406 24. Ferguson KM, 2004. Active and inactive conformations of the epidermal growth factor receptor. Biochem. Soc. Trans. 32:742-745 25. Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C, Lai C, Rubenstein JLR and Marin O. 2004. Short- and Long-Range Attraction of Cortical GABAergic Interneurons by Neuregulin-1. Neuron, 44:251-261 26. Fonoff ET, Daleb CS, Paganob RL, Paccolac CC, Ballestera G, Teixeiraa MJ and Giorgic R. 2009. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system. Behavioural Brain Research 1(3):63-70 27. Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G. 1995. Abberrant neural and cardiac development in mice lacking the erbb4 neuregulin receptor. Nature 378:390-394 28. Gerlai R, Pisacane P and Erickson S. 2000. Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks Behavioural Brain Research 109:219-227. 29. Ghashghaei HT, Weber J, Pevny L, Schmid R, Schwab MH, Kent-Lloyd KC , Eisenstat DD, Lai C and Anton ES. 2006. The role of neuregulin–ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. PNAS 103(6): 1930-1935. 30. Goghari VM, Lang DJ, Flynn SW, MacKay AL and Honer WG. 2005. Smaller corpus callosum subregions containing motor fibers in schizophrenia. Schizophrenia Research 73:59-68 31. Goldman-Rakic PS. 1999. The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol. Psychiatry 46:650–661. 32. Gu Z, Jiang Q, Fu AK, Ip NY, Yan Z. 2005. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 25:4974-4984. 33. Guenther W, Brodie JD, Bartlett EJ, Dewey SL, Henn FA, Volkow ND, Alper K, Wolkin A, Cancro R and Wolf AP. 1994. Diminished cerebral metabolic response to motor stimulation in schizophrenics: a PET study. Eur. Arch. Psychiatry Clin. Neurosci. 244: 115-125 34. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D and Costa E. 2000. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. Arch. Gen. Psychiatry 57:1061-1069 35. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ and Arnold SE. 2006. Altered neuregulin 1–erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med. 12(7):824-8. 36. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE and Weinberger DR. 2004. Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Molecular Psychiatry 9:299-307 37. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN, Sun Z, Sampson AR and Lewis DA. 2005. Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J. Neurosci. 25:372-383 38. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, Yansura D, Abadi N, Raab H and Lewis GD. 1992. Identification of heregulin, a specific activator of p185erbB2. Science 256:120-1210 39. Inta D, Alfonso J, Engelhardt J, Kreuzberg MM, Meyer AH, Hooft JA and Monyer H. 2008. Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci 105(52):20994-20999 40. Ishizuka K, Paek M, Kamiya A and Sawa A. 2006. A Review of Disrupted-in-Schizophrenia-1 (disc1): Neurodevelopment, Cognition, and Mental Conditions. BIOL PSYCHIATRY 59:1189-1197 41. Jessen KR and Mirsky R. 1999. Why do Schwann cells survive in the absence of axons? Ann N Y Acad Sci 883:109-15. 42. Kerber G, Streif R, Schwaiger FW, Kreutzberg GW, and Hager G. 2003. Neuregulin-1 Isoforms Are Differentially Expressed in the Intact and Regenerating Adult Rat Nervous System. Journal of Molecular Neuroscience 21:149–165 43. Keshavan MS, Diwadkar VA, Harenski K, Rosenberg DR, Sweeney JA and Pettegrew JW. 2002. Abnormalities of the corpus callosum in first episode, treatment naive schizophrenia. J. Neurol. Neurosurg. Psychiatry 72:757-760 44. Kimberly M. Gerecke J, Michael W and Carroll SL. 2004. Neuregulin-1B induces neurite extension and arborization in cultured hippocampal neurons. Mol. Cell. Neurosci. 27:379– 393 45. Kramer R, Bucay N, Kane DJ, Martin LE, Tarpley JE and Theill LE. 1996. Neuregulins with an Ig-like domain are essential for mouse 46. myocardial and neuronal development. Proc. Natl. Acad. Sci. 93:4833-4838 47. Law AJ, Lipska BK, Weickert CS, Hyde TM., Straub RE, Ryota Hashimoto, Paul J. Harrison, Joel E. Kleinman and Daniel R. Weinberger. 2006. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5'SNPs associated with the disease.PNAS, 103, 17:6747-6752 48. Law AJ, Shannon weickert C, Hyde TM, Kleinman JE and Harrison PJ. 2004. Neugulin-1 (NRG-1) mRNA and protein in the adult in the human brain Neuroscience 127:125-136 49. Law AJ, Kleinma JE, Weinberger DR and Weickert CS. 2007. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum. Mol. Genet. 16:129-141. 50. Lemke G. 1996. Neuregulins in development. Molecular and cellular neuroscience 7:247-262 51. Lewis DA and Gonzalez-Burgos G. 2006. Pathophysiologically based treatment interventions in schizophrenia. NATURE MEDICINE, 12:9 52. Li W, Park JW, Nuilens A, Sliwkowski MX and Keller GA. 1996. Heregulin is rapidly translocated to the nucleus and its transport is correlated with c-myc indunction in breast cancer cell. Oncogene 12:2473-2477 53. Li W, Park JW, Nuijens A, Sliwkowski MX and Keller GA. 1996. Heregulin is rapidly translocated to the nucleus and its transported is correlated with c-myc induction in breast cancer cells. Oncogene 12: 2473-2477 54. Liu Y, Ford BD, Mann MA, Fischbach GD. 2005. Neuregulin-1 increases the proliferation of neuronal progenitors from embryonic neural stem cells. Developmental Biology 283:437-445 55. Luskin MB. 1993. Restricted Proliferation and Migration of Postnatally Generated Neurons Derived from the Forebrain Subventricular Zone. Neuron 11:173-189 56. Mayada Akil MD, Pierri JN, M.S., M.D., Richard E. Whitehead, B.S., Christine L. Edgar, B.S., Carrie Mohila, B.S., Allan R. Sampson, Ph.D., and David A. Lewis, M.D. Marchionni MA, Goodearl AD, Chen MS, Bermingham-McDo-nogh O, Kirk C, Hendricks M and Danehy F. 1999. Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am. J. Psychiatry 156:1580–1589 57. Meyer D, Yamaai T, Garratt A, Riethmacher-Sonnenberg E, Kane D, Theill LE and Birchmeier C. 1997. Isoform-specific expression and function of neuregulin. Development 124:3575-3586 58. Meyer D and Birchmeier C. 1995. Multiple essential functions of neuregulin in development. Nature 378:386-390. 59. Moghaddam B. 2003. Bringing order to the glutamate chaos in schizophrenia. Neuron 40:881-884. 60. Morrison PD and Murray RM. 2005. Schizophrenia. Current Biology 15, 24:R980-R984 61. Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A. and Levitt, P. 2000. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28:53-67 62. Misumi D, Sudhalter J and Kobayashi K. 1993. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362:312-318. 63. Miwako ozaki. 2001. Neuregulins and the Shaping of Synapses. NEUROSCIENTIST 7(2):146-154 64. Miwako ozaki, Busfield SJ, Michnick DA, Chickering TW, Revett TL, Woolf EA and Comrack CA. 1997. Characterization of a neuregulin-related gene, Don-1, that is highly expressed in restricted regions of the cerebellum and hippocampus. Mol Cell Biol 17:4007-14 65. Nitsch C and Riesenberg R. 1995. Synaptic reorganisation in the rat striatum after dopaminergic deafferentation: an ultrastructural study using glutamate decarboxylase immunocytochemistry. Synapse New York, 19(4):247-263. 66. Niznikiewicz MA, Kubicke M, and Shenton ME. 2003. Recent structural and functional imaging findings in schizophrenia. Curr. Opin. Psych. 16:123-147. 67. Olney JW and Farber NB. 1995. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry 52:998-1007 68. Ozaki M, Sasner M, Yano R, Lu HS and Buonanno A. 1997. Neurgulin-induces expression of an NMDA receptor subunit. Nature 390:691-4. 69. Patel NV, Acarregui MJ, Snyder JM, Klein JM, Sliwkowski MX, Kern JA, and others. 2000. Neuregulin-1 and human epidermal growth factor receptors 2 and 3 play a role in human lung development invitro. Cell Mol Biol 22(4):432-40. 70. Peles E., Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, Levy RB and Yarden Y. 1992. Isolation of the neu/HER-2 stimulatory ligand: A44 kd glycoprotein thatinduces differentiation of mammary tumor cells. Cell 69: 205-216. 71. Peles E and Yarden Y. 1993. Neu and its ligands: from an oncogene to neural factors. BioEssays 15:815-24. 72. Pinkas-Kramarski R, Eilam R, Alroy I, Levkowitz G, Lonai3 P and Yarden Y. 1997. Differential expression of NDF/neuregulin receptors ErbB-3 and ErbB-4 and involvement in inhibition of neuronal di erentiation. Oncogene 15:2803-2815 73. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A and Lesch KP. 2006. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Molecular Psychiatry 11:514-522 74. Rieff HI and Corfas G. 2006. ErbB receptor signalling regulates dendrite formation in mouse cerebellar granule cells in vivo. Eur J Neurosci 23:2225–2229. 75. Rieff HI, Raetzman LT, Sapp DW, Yeh HH, Siegel RE and Corfas G. 1999. Neuregulin induces GABA(A) receptor subunit expression and neuriteoutgrowth in cerebellar granule cells. J Neurosci 19(24):10757-66 76. Ross CA, Margolis RL, Reading SAJ, Pletnikov M, and Coyle JT. 2006. Neurobiology of Schizophrenia. Neuron 52:139–153 77. Rimer M, Barrett DW, Maldonado MA, Vock VM and Gonzalez-Lima F.2005. Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. NeuroReport 16:271-275 78. Rio C, Rieff HI, Qi P and Corfas G. 1997. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19:39-50. 79. Sandrock AW, Dryer SE, Rosen KM, Gozani SN, K ramer R, Theill LE, and others.1997. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276:599-603. 80. Sardi SP, Murtie J, Koirala S, Patten BA, and Corfas G. 2006. Presenilin-Dependent ErbB4 Nuclear Signaling Regulates the Timing of Astrogenesis in the Developing Brain. Cell. Oct 6;127(1):185-97 81. Schmid RS, McGrath B, Berechid BE, Boyles B, Marchionni M, Šestan N and Anton ES. 2003. Neuregulin 1–erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci 100(7): 4251-4256. 82. Schrfder J, Wenz F, Schad LR, Baudendistel K and Knopp MV. 1995. Sensorimotor cortex and supplementary motor area changes in schizophrenia: A study with functional magnetic resonance imaging. Br. J. Psychiatry 167:197-201 83. Schrfder J, Essig M, Baudendistel K, Jahn T, Gerdsen I, Stockert A, Schad LR and Knopp MV. 1999. Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: a study with functional magnetic resonance imaging. Neuroimage 9:81-87 84. Snyder SH. 1972. Catecholamines in the brain as mediators of amphetamine psychosis. Arch Gen Psychiatry 27:169-179 85. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, Gunnarsdottir S, Walker N, Petursson H, Crombie C, Ingason A, Gulcher JR, Stefansson K and Clair D. 2003. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population.AmJHumGenet 72:83-87. 86. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, GurneyME, Kong A, Gulcher JR, Petursson H, Stefansson K. 2002. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877-892. 87. Silberberg G, Darvasi A, Pinkas-Kramarski R and Navon R. 2006. The involvement of ErbB4 with schizophrenia: association and expression studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141:142-148. 88. Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL, Einheber S and Salzeri JL. 2008. Type III Neuregulin-1 Promotes Oligodendrocyte Myelination. Glia 56:284-293 89. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG and Freed WJ.2002. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr. Res. 58:11-20 90. Viggiano D. 2008. The hyperactive syndrome: Metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity. Behavioural Brain Research 194(1): 1-14 91. Volk DW, Austin MC, Pierri JN, Sampson AR and Lewis DA. 2000. Decreased glutamic acid decarboxylase67 mRNA expression in a subset of prefrontal cortical γ-aminobutyric acid neurons in subjects with schizophrenia. Arch. Gen. Psychiatry 57:237-245 92. Wang JY, Frenzel KE, Wen D and Falls DL. 1998. Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. J. Biol. Chem. 273:20525-20534. 93. Weinberger DR. 1987. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44:660-669 94. Wible CG, Anderson J and Shenton ME. 2001. Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatry Res:108:65-78. 95. Witelson SF. 1989. Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112:799-835 96. Woo RS, Li XM, Tao Y, Carpenter-Hyland E, Huang YZ, Weber J, Neiswender H, Dong XP, Wu J, Gassmann M, Lai C, Xiong WC, Gao TM and Mei L. 2007. Neuregulin-1 Enhances Depolarization-Induced GABA Release. Neuron 54:599-610. 97. Yau HJ, Wang HF, Lai C and Liu FC. 2003. Neural Development of the Neuregulin Receptor ErbB4 in the Cerebral Cortex and the Hippocampus: Preferential Expression by Interneurons Tangentially Migrating from the Ganglionic Eminences. Cerebral Cortex 13(3):252-264. 98. Yucel M, Stuart GW and Maruff P. 2002. Paracingulate morphologic differences in males with established schizophrenia: a magnetic resonance imaging morphometric study. Biol Psychiatry, 52:15-23. 99. Yurek DM, Zhang L, Fletcher-Turner A, Seroogy KB. 2004. Supranigral injection of neuregulin1 induces striatal dopamine overflow. Brain Research 1028:116-119 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43797 | - |
dc.description.abstract | Neuregulin1(NRG1,神經調節素1)的功能為調節發育及細胞遷移,且nrg1 gene的變異可能會導致精神分裂症。NRG1 mutant mice的過動、認知行為異常和精神經分裂症(schizophrenia)病人症狀類似,因此可用來做研究精神分裂症病因的動物模式。此疾病成因可能因為基因、發育、神經傳導物質發生異常所造成。目前已知精神分裂症病人前額葉皮質神經傳導物質分泌異常。本篇研究為利用尼氏染色法及免疫化學染色比較四週、八週NRG1變異小鼠(△TM+/-)及野生型小鼠胼胝體的型態及額腦區域內蛋白質的表現,以探討NRG1變異小鼠行為異常背後的可能機制。
我們發現 1.胼胝體:四週和八週NRG1變異小鼠胼胝體長度及寬度較野生型小鼠無顯著差異,但在駢胝體面積四週NRG1變異小鼠較野生型小鼠下降約23%,八週NRG1變異小鼠和野生型小鼠相較無顯著差異。 2.扣帶皮質 (i)扣帶皮質1的L2/3: 八週NRG1變異小鼠tyrosine hydroxylase (TH)纖維密度較野生型上升73%,四週NRG1變異小鼠和野生型小鼠相較無顯著差異。四週和八週NRG1變異小鼠GAD67細胞體及點狀神經末梢和野生型小鼠相比無顯著差異。四週NRG1變異小鼠parvalbumin (PV)纖維密度較野生型上升33%,八週NRG1變異小鼠較野生型上升41%。NRG1深染細胞數,四週NRG1變異小鼠較野生型下降78%;八週NRG1變異小鼠較野生型下降97%。NRG1淡染細胞數,四週NRG1變異小鼠較野生型下降24%;八週NRG1變異小鼠較野生型下降43%。NRG1總細胞數,四週NRG1變異小鼠較野生型下降32%;八週NRG1變異小鼠較野生型下降約69%。四週NRG1變異小鼠ErbB4視密度較野生型上升約27%,八週NRG1變異小鼠較野生型上升約16%。 (ii)扣帶皮質1的L5: TH纖維密度,GAD67細胞體數及點狀神經末梢密度,PV細胞體數及纖維密度,NRG1深染細胞數,NRG1總細胞數和ErbB4視密度表現的改變和扣帶皮質1的L2/3類似。但NRG1淡染細胞數,四週NRG1變異小鼠較野生型無顯著差異,八週NRG1變異小鼠較野生型上升111%。 (iii)扣帶皮質II的L2/3: 八週NRG1變異小鼠tyrosine hydroxylase (TH)纖維密度較野生型上升103%,四週NRG1變異小鼠和野生型小鼠相較無顯著差異。四週NRG1變異小鼠GAD67細胞體數較野生型上升約30%,八週NRG1變異小鼠和野生型小鼠相較無顯著差異。四週和八週NRG1變異小鼠GAD67點狀神經末梢和野生型小鼠相比無顯著差異。四週NRG1變異小鼠PV細胞體較野生型上升約127%,八週NRG1變異小鼠和野生型小鼠相較無顯著差異。四週NRG1變異小鼠PV神經纖維密度和野生型小鼠相比上升約39%,八週NRG1變異小鼠較野生型上升61%。NRG1深染細胞數,四週NRG1變異小鼠較野生型下降98%;八週NRG1變異小鼠較野生型下降93%。NRG1淡染細胞數,四週NRG1變異小鼠較野生型小鼠上升約45%,八週NRG1變異小鼠較野生型無顯著差異。NRG1總細胞數,四週NRG1變異小鼠較野生型下降37%,八週NRG1變異小鼠和野生型小鼠相較無顯著差異。四週NRG1變異小鼠ErbB4視密度較野生型上升約14%,八週NRG1變異小鼠較野生型上升約18%。 (iv)扣帶皮質II的L5: TH纖維密度,GAD67細胞體數及點狀神經末梢密度,PV細胞體數及纖維密度,NRG1深染細胞數和ErbB4視密度表現的改變和扣帶皮質1的L2/3類似。但四週NRG1變異小鼠NRG1淡染細胞體數較野生型上升約37%,八週NRG1變異小鼠較野生型上升約78%。四週NRG1變異小鼠NRG1總細胞體數較野生型下降約31%,八週NRG1變異小鼠較野生型下降約29%。 3.體感覺皮質 (i) 體感覺皮質的L2/3:四週NRG1變異小鼠GAD67細胞體數較野生型小鼠上升約60%,八週NRG1變異小鼠較野生型上升32%。四週NRG1變異小鼠DCX7細胞體數較野生型小鼠上升約50%,八週NRG1變異小鼠較野生型上升100%。 (ii) 體感覺皮質的L4:四週和八週NRG1變異小鼠GAD67及DCX細胞體數和野生型小鼠相比無顯著差異。 (iii) 體感覺皮質的L5:四週NRG1變異小鼠GAD67細胞體數較野生型小鼠上升約44%,八週NRG1變異小鼠較野生型上升18%。四週NRG1變異小鼠DCX7細胞體數較野生型小鼠上升約128%,八週NRG1變異小鼠較野生型上升56%。 另外,定性發現,四週和八週NRG1變異小鼠PV細胞體數,NRG1淡染細胞數及ErbB4視密度在L2/3,L4及L5較野生型小鼠增加,NRG1深染細胞數及NRG1總細胞數較野生型小鼠減少。 4.側腦室: 四週NRG1變異小鼠DCX表現面積較野生型小鼠上升約46%,四週NRG1變異小鼠和野生型小鼠相較無顯著差異。:四週NRG1變異小鼠DCX表現面積和側腦室比例較野生型小鼠上升約34%,八週NRG1變異小鼠和野生型小鼠相較無顯著差異。 綜合以上所述,NRG1變異可能會影響胼胝體、扣帶皮質、體感覺皮質及側腦室這些核區,這可能為NRG1變異小鼠行為異常的原因之一。些異常行為背後的腦神經化學型態或許可以作為未來發展治療精神分裂症方式的基礎。 | zh_TW |
dc.description.abstract | Neuregulin1 (NRG1) is growth and differentiation factor with a wide range of function in nervous system.NRG1 regulates development and migration of neurons. Recent molecular genetics studies implicate NRG1 is a promising candidate gene for schizophrenia. Mutant mice heterozygous for NRG1 show behavioral phenotype that overlaps with mouse models for schizophrenia. Studies of NRG1 mutant mice have provided support for the potential role of mutations in the gene as risk factor for schizophrenia. Schizophrenia is a devastating disease that affects the general population. The hypothesis that this disease is a developmental and neurotransmitter disorder of the nervous system. In previous studies, schizophrenia patients exhibit markedly reduced levels of GAD67 mRNA and dopamine in the dorsolateral prefrontal cortex. Thus, this study investigate the roles of frontal lobe in the mutation of nrg1 gene, by nissl stain and examining the expression of GAD67, dopamine, PV and DCX in 4 weeks and 8 weeks WT and NRG1 mutant mice (△TM+/-).
Our results reveled that: (1) Corpus callosum(CC): There is no significant alternation in width and length of CC in 4wk and 8wk NRG1 mutant mice, but 4wks NRG1 mutant mice exhibit decreased area of CC. (2) Cingulate cortex (Cin): I. L2/3 and L5 of Cin1: The density of TH is increased in 8wk NRG1 mutant mice. There are no significant alternation in the number of GABAergic and PV neurons in 4wk and 8wk NRG1 mutant mice . There is no significant alternation in the expression of GAD67 but the density of PV is increased in 4wk and 8wk NRG1 mutant mice. II. L2/3 and L5 of Cin2: The density of TH is increased in 8wk NRG1 mutant mice. There is an increased in the numbers of GABAergic and PV neurons in 4wk mutant mice, but no significant alternation in 8wk NRG1 mutant mice. There is no significant alternation in the expression of GAD67 but the density of PV is increased in 4wk and 8wk NRG1 mutant mice. (3) L2/3, L4 and L5 of Somatosensory cortex (SSC): There is an increased in the numbers of GABAergic and DCX neurons in the L2/3 and L5 of SSC in 4wk and 8wk NRG1 mutant mice, but there is no significant alternation in the L4. (4) Lateral ventricle (LV): There is an increased in the area and ratio of DCX in 4wk NRG1 mutant mice, but there is no significant alternation in 8wk NRG1 mutant mice. It is known that the activity of NRG1 could disturb the expression of dopamine, GABA, and PV in cingulate cortex and somatosensory cortex. The mutation of NRG1 also affects the areas of corpus callosum and the expression of DCX in lateral ventricle Our results suggest that the activity of NRG1 is associated with the dopamine and GABA system in frontal brain region, leading to functional and behavioral changes, and may implicate mechanism of abnormality of NRG1 mutant mice. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:28:57Z (GMT). No. of bitstreams: 1 ntu-98-R96446009-1.pdf: 40115609 bytes, checksum: cc23ba682316592e90c9312c29655088 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 論文口試委員審定書…………………………………………………………… i
致謝……………………………………………………………………………… ii 中文摘要………………………………………………………………………… iii 英文摘要………………………………………………………………………… vii 論文本文 緒論……………………………………………………………………………… 1 材料與方法……………………………………………………………………… 11 結果……………………………………………………………………………… 21 討論……………………………………………………………………………… 37 結論……………………………………………………………………………… 47 參考文獻………………………………………………………………………… 48 圖表與說明……………………………………………………………………… 56 胼胝體的尼氏染色型態…………………………………………………… 72 扣帶皮質尼氏染色的型態………………………………………………… 74 扣帶皮質的TH免疫染色圖………………………………………………… 80 扣帶皮質的GAD67免疫染色圖……………………………………………… 84 扣帶皮質的PV免疫染色圖………………………………………………… 88 扣帶皮質的NRG1結合NeuN雙重免疫染色圖……………………………… 92 扣帶皮質的NRG1免疫染色圖……………………………………………… 94 扣帶皮質的NRG1結合GAD67雙重免疫染色圖……………………………… 96 扣帶皮質的NRG1結合PV雙重免疫染色圖………………………………… 97 扣帶皮質的ErbB4結合NeuN雙重免疫染色圖…………………………… 100 扣帶皮質的ErbB4免疫染色圖…………………………………………… 102 扣帶皮質的ErbB4結合GAD67雙重免疫染色圖…………………………… 104 扣帶皮質的ErbB4結合PV雙重免疫染色圖……………………………… 105 體感覺皮質的GAD67免疫染色圖………………………………………… 108 體感覺皮質的DCX免疫染色圖……………………………………………110 侧腦室的DCX免疫染色圖…………………………………………………112 侧腦室的DCX結合pCREB雙重免疫染色圖……………………………… 116 侧腦室的DCX結合ErbB4雙重免疫染色圖……………………………… 117 西方墨點法ErbB4免疫染色…………………………………………… 118 簡寫全名列表………………………………………………………………… 119 | |
dc.language.iso | zh-TW | |
dc.title | 發育中NRG1變異小鼠的多巴胺纖維,迦瑪胺基丁酸細胞和doublecortin在額腦區域表現的改變 | zh_TW |
dc.title | Changes in the dopaminergic, GABAergic and doublecortin expression in frontal brain regions of developing Neuregulin1-mutant mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 符文美(Wun-Mei Fu),呂俊宏(Chun -Hung Lu),錢嘉韻(Chaia-Yun Chien),李立仁 | |
dc.subject.keyword | 神經調節素,多巴胺,迦瑪胺基丁酸, | zh_TW |
dc.subject.keyword | neuregulin,dopaminergic,GABA, | en |
dc.relation.page | 119 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 39.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。