Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43782
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳燕惠
dc.contributor.authorYeh-Ssu Linen
dc.contributor.author林曄思zh_TW
dc.date.accessioned2021-06-15T02:28:29Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citation1. Dickson, R.B., et al., Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res, 1986. 46(4 Pt 1): p. 1707-13.
2. Osborne, C.K., K. Hobbs, and J.M. Trent, Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res Treat, 1987. 9(2): p. 111-21.
3. Batist, G., et al., Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem, 1986. 261(33): p. 15544-9.
4. Poola, I., et al., Estrogen receptor alpha-negative breast cancer tissues express significant levels of estrogen-independent transcription factors, ERbeta1 and ERbeta5: potential molecular targets for chemoprevention. Clin Cancer Res, 2005. 11(20): p. 7579-85.
5. Conzen, S.D., Minireview: nuclear receptors and breast cancer. Mol Endocrinol, 2008. 22(10): p. 2215-28.
6. Lin, Z., et al., Novel estrogen receptor-alpha binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer. Cancer Res, 2007. 67(10): p. 5017-24.
7. Cork, D.M., T.W. Lennard, and A.J. Tyson-Capper, Alternative splicing and the progesterone receptor in breast cancer. Breast Cancer Res, 2008. 10(3): p. 207.
8. Mosselman, S., J. Polman, and R. Dijkema, ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett, 1996. 392(1): p. 49-53.
9. Leygue, E., et al., Altered estrogen receptor alpha and beta messenger RNA expression during human breast tumorigenesis. Cancer Res, 1998. 58(15): p. 3197-201.
10. Lin, C.Y., et al., Inhibitory effects of estrogen receptor beta on specific hormone-responsive gene expression and association with disease outcome in primary breast cancer. Breast Cancer Res, 2007. 9(2): p. R25.
11. Behrens, D., J.H. Gill, and I. Fichtner, Loss of tumourigenicity of stably ERbeta-transfected MCF-7 breast cancer cells. Mol Cell Endocrinol, 2007. 274(1-2): p. 19-29.
12. Lazennec, G., Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Lett, 2006. 231(2): p. 151-7.
13. Paruthiyil, S., et al., Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res, 2004. 64(1): p. 423-8.
14. Strom, A., et al., Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A, 2004. 101(6): p. 1566-71.
15. Conneely, O.M., et al., Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice. Mol Cell Endocrinol, 2001. 179(1-2): p. 97-103.
16. Tung, L., et al., Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol Endocrinol, 1993. 7(10): p. 1256-65.
17. McDonnell, D.P., et al., The human progesterone receptor A-form functions as a transcriptional modulator of mineralocorticoid receptor transcriptional activity. J Steroid Biochem Mol Biol, 1994. 48(5-6): p. 425-32.
18. Hopp, T.A., et al., Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res, 2004. 10(8): p. 2751-60.
19. Khan, S.A., et al., Estrogen receptor expression in benign breast epithelium and breast cancer risk. J Natl Cancer Inst, 1998. 90(1): p. 37-42.
20. Fanelli, M.A., et al., Estrogen receptors, progesterone receptors, and cell proliferation in human breast cancer. Breast Cancer Res Treat, 1996. 37(3): p. 217-28.
21. Martin, M.B., et al., Regulation of estrogen receptor expression. Breast Cancer Res Treat, 1994. 31(2-3): p. 183-9.
22. Barrett-Lee, P.J., et al., Characterization of estrogen receptor messenger RNA in human breast cancer. Cancer Res, 1987. 47(24 Pt 1): p. 6653-9.
23. Stoica, A., et al., The role of transforming growth factor-beta in the regulation of estrogen receptor expression in the MCF-7 breast cancer cell line. Endocrinology, 1997. 138(4): p. 1498-505.
24. Tang, Z., I. Treilleux, and M. Brown, A transcriptional enhancer required for the differential expression of the human estrogen receptor in breast cancers. Mol Cell Biol, 1997. 17(3): p. 1274-80.
25. McPherson, L.A., V.R. Baichwal, and R.J. Weigel, Identification of ERF-1 as a member of the AP2 transcription factor family. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4342-7.
26. deConinck, E.C., L.A. McPherson, and R.J. Weigel, Transcriptional regulation of estrogen receptor in breast carcinomas. Mol Cell Biol, 1995. 15(4): p. 2191-6.
27. deGraffenried, L.A., S.G. Hilsenbeck, and S.A. Fuqua, Sp1 is essential for estrogen receptor alpha gene transcription. J Steroid Biochem Mol Biol, 2002. 82(1): p. 7-18.
28. Lahn, M., et al., Protein kinase C alpha expression in breast and ovarian cancer. Oncology, 2004. 67(1): p. 1-10.
29. Ahmad, S. and R.I. Glazer, Expression of the antisense cDNA for protein kinase C alpha attenuates resistance in doxorubicin-resistant MCF-7 breast carcinoma cells. Mol Pharmacol, 1993. 43(6): p. 858-62.
30. Gill, P.K., A. Gescher, and T.W. Gant, Regulation of MDR1 promoter activity in human breast carcinoma cells by protein kinase C isozymes alpha and theta. Eur J Biochem, 2001. 268(15): p. 4151-7.
31. Ways, D.K., et al., MCF-7 breast cancer cells transfected with protein kinase C-alpha exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. J Clin Invest, 1995. 95(4): p. 1906-15.
32. Tonetti, D.A., et al., Elevated protein kinase C alpha expression may be predictive of tamoxifen treatment failure. Br J Cancer, 2003. 88(9): p. 1400-2.
33. Harris, A.L., et al., Breast cancer angiogenesis--new approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res Treat, 1996. 38(1): p. 97-108.
34. Kim, J.A., et al., Decreased production of vascular endothelial growth factor in adriamycin-resistant breast cancer cells. Cancer Lett, 2008. 268(2): p. 225-32.
35. Schneider, B.P. and G.W. Sledge, Jr., Drug insight: VEGF as a therapeutic target for breast cancer. Nat Clin Pract Oncol, 2007. 4(3): p. 181-9.
36. Miller, K.D., et al., Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol, 2005. 23(4): p. 792-9.
37. Semenza, G.L., Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol, 2000. 35(2): p. 71-103.
38. Strieter, R.M., Masters of angiogenesis. Nat Med, 2005. 11(9): p. 925-7.
39. Arden, K.C., Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol, 2006. 41(8): p. 709-17.
40. Han, C.Y., et al., Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis, 2008. 29(9): p. 1837-44.
41. Chen, G.K., et al., CCAAT/enhancer-binding protein beta (nuclear factor for interleukin 6) transactivates the human MDR1 gene by interaction with an inverted CCAAT box in human cancer cells. Mol Pharmacol, 2004. 65(4): p. 906-16.
42. Jin, W., et al., Involvement of CtBP1 in the transcriptional activation of the MDR1 gene in human multidrug resistant cancer cells. Biochem Pharmacol, 2007. 74(6): p. 851-9.
43. Macrae, I.J., et al., Structural basis for double-stranded RNA processing by Dicer. Science, 2006. 311(5758): p. 195-8.
44. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818): p. 363-6.
45. Ketting, R.F., et al., Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev, 2001. 15(20): p. 2654-9.
46. Nykanen, A., B. Haley, and P.D. Zamore, ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001. 107(3): p. 309-21.
47. Elbashir, S.M., W. Lendeckel, and T. Tuschl, RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 2001. 15(2): p. 188-200.
48. Rand, T.A., et al., Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 2005. 123(4): p. 621-9.
49. Kovalchuk, O., et al., Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther, 2008. 7(7): p. 2152-9.
50. Yu, S.T., et al., Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochem Biophys Res Commun, 2007. 358(1): p. 79-84.
51. Cui, X., et al., Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol, 2005. 23(30): p. 7721-35.
52. Hewitt, S.C. and K.S. Korach, Progesterone action and responses in the alphaERKO mouse. Steroids, 2000. 65(10-11): p. 551-7.
53. Wei, L.L., et al., Multiple human progesterone receptor messenger ribonucleic acids and their autoregulation by progestin agonists and antagonists in breast cancer cells. Mol Endocrinol, 1988. 2(1): p. 62-72.
54. Nardulli, A.M., et al., Regulation of progesterone receptor messenger ribonucleic acid and protein levels in MCF-7 cells by estradiol: analysis of estrogen's effect on progesterone receptor synthesis and degradation. Endocrinology, 1988. 122(3): p. 935-44.
55. Roberts, C.G., et al., Synergistic cytotoxicity between tamoxifen and the plant toxin persin in human breast cancer cells is dependent on Bim expression and mediated by modulation of ceramide metabolism. Mol Cancer Ther, 2007. 6(10): p. 2777-85.
56. Tari, A.M., et al., Cyclooxygenase-2 protein reduces tamoxifen and N-(4-hydroxyphenyl)retinamide inhibitory effects in breast cancer cells. Lab Invest, 2005. 85(11): p. 1357-67.
57. Lacave, R., et al., Comparative evaluation by semiquantitative reverse transcriptase polymerase chain reaction of MDR1, MRP and GSTp gene expression in breast carcinomas. Br J Cancer, 1998. 77(5): p. 694-702.
58. Shazand, K., et al., FOXO1 and c-jun transcription factors mRNA are modulated in endometriosis. Mol Hum Reprod, 2004. 10(12): p. 871-7.
59. Wolf, I., et al., Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene, 2008. 27(56): p. 7094-105.
60. Mizukami, Y., et al., Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med, 2005. 11(9): p. 992-7.
61. Maynard, M.A., et al., Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J, 2005. 19(11): p. 1396-406.
62. Li, Q.Q., et al., Up-regulation of CD147 and matrix metalloproteinase-2, -9 induced by P-glycoprotein substrates in multidrug resistant breast cancer cells. Cancer Sci, 2007. 98(11): p. 1767-74.
63. Shibaya, M., et al., Expressions of estrogen receptors in the bovine corpus luteum: cyclic changes and effects of prostaglandin F2alpha and cytokines. J Reprod Dev, 2007. 53(5): p. 1059-68.
64. Latil, A., et al., Evaluation of androgen, estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer Res, 2001. 61(5): p. 1919-26.
65. Tang, K.F., et al., Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB. J Cell Biol, 2008. 182(2): p. 233-9.
66. Diederichs, S. and D.A. Haber, Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell, 2007. 131(6): p. 1097-108.
67. Kim, S. and T. Kim, Selection of optimal internal controls for gene expression profiling of liver disease. Biotechniques, 2003. 35(3): p. 456-8, 460.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43782-
dc.description.abstract多重抗藥性(mutidrug resistance)是癌症化學治療常見的問題,經常伴隨某些酵素或細胞生物標記表現量或功能上的改變,如P-gp(P-glycoprotein),MRP(mutidrug resistance-releated protein),topoisomerase或glutathione等。我們利用乳癌細胞株MCF-7/WT和具有對adriamycin類抗癌藥有抗藥性的細胞株MCF-7/ADR,研究在此兩種細胞株表現量有差異的酵素或蛋白質,包括ER-α (estrogen receptor α)、ER-β (estrogen receptorβ)、PR (progestrone receptor)、VEGF(vascular endothelial growth factor)、HIF-1α ( hypoxia-inducible factor-1α ) 、FoxO1(forkhead box-containing protein,O subfamily)、C/EBP β(CCAAT/enhancer-binding protein β)、CtBP1(C-terminal binding protein 1)、dicer 1、argonaute 2、PIM-1以及PKc α (protein kinase c α),藉以深入研究多重抗藥性的機制。
色胺酮(tryptanthrin)是一種吲哚類衍生物,併用tryptanthrin和doxorubicin可使MCF-7/ADR細胞對doxorubicin的敏感性上升、doxorubicin IC50值大幅降低。
我們以tryptanthrin為工具,利用聚合酶連鎖反應法(PCR)、即時定量-聚合酶連鎖反應法 (real-time PCR)以及西方墨點法(Western blot) 觀察MCF-7/WT和MCF-7ADR細胞在加了10-6 M tryptanthrin五天後,對前述目標蛋白質的影響。在篩選的過程中雖然沒有發現新的方向來解釋MCF-7/ADR細胞抗藥性產生的原因,但發現tryptanthrin具有抑制核蛋白受體表現的能力。MCF-7/WT細胞加入tryptanthrin後,ER-α蛋白的表現下降了一半。並且進一步藉由EMSA實驗證實tryptanthrin會影響ER-α啟動子上IEF-1區域與SP1家族蛋白的鍵結,暗示著tryptanthrin抑制ER-α基因的表現可能是經由減少ER-α啟動子與SP1家族蛋白的鍵結。MCF-7/WT細胞的PR基因比ER-α基因更快受到tryptanthrin的抑制,但文獻報導PR基因位於ER-α基因下游,暗示著PR基因受到tryptanthrin的影響可能不是經由ER-α基因的改變。另外還藉由siRNA抑制MCF-/WT細胞的ER-α基因,發現MDR1基因並沒有因此而表現,所以tryptanthrin抑制ER-α基因的表現和MCF-7/ADR細胞表現MDR1基因並沒有直接相關。
zh_TW
dc.description.abstractMultidrug resistance (MDR), the resistance of tumor cells to anticancer agents, remains a major cause of treatment failure for cancer patients. MDR usually occurs with alteration of function and expression of some proteins and enzymes, for example P-gp (P-glycoprotein), MRP (multidrug resistance-related protein), topoisomerase and glutathione. Recently, the genes which show differential expressions in MCF-7/WT and its doxorubicin-resistant counterpart MCF-7/ADR include ER-α (estrogen receptor α), ER-β (estrogen receptor β), PR (progesterone receptor), VEGF(vascular endothelial growth factor), HIF-1α ( hypoxia-inducible factor-1α ) , FoxO1(forkhead box-containing protein,O subfamily), C/EBP β(CCAAT/enhancer-binding protein β), CtBP1(C-terminal binding protein 1), dicer 1, argonaute 2, PIM-1 and PKc α (protein kinase c α).
Our lab previously demonstrated that tryptanthrin could reverse the resistance to doxorubicin in MCF-7/ADR. In order to extensively understand the mechanisms of multidrug resistance, MCF-7/WT and MCF-7/ADR were treated with trptanthrin to examine the changes in expression of the above genes in this study, using RT-PCR, realtime-PCR and Western blot.
Results show that tryptanthrin suppresses the expression of nuclear receptor genes in MCF-7/WT. The expression of ER-α is 50% down. Furthermore, the binding of SP1 family proteins to ER-α promoter site IEF-1 decreases upon tryptanthrin treatment. In mRNA level, tryptanthrin inhibits the expression of PR prior to the expression of ER-α. As PR is downstream protein of ER-α, it seems that tryptanthrin acts on PR and ER-α via different pathways. When ER-α expression was knockdowned by siRNA in MCF-7/WT, the expression of MDR1 gene did not induced, suggesting the decrease in ER-α was not related to MDR1 gene expression in MCF-7/ADR.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:28:29Z (GMT). No. of bitstreams: 1
ntu-98-R96423017-1.pdf: 1368990 bytes, checksum: a640ee2ac104ff581926ae54403b6564 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
中文摘要………………………………………………………………………………i
英文摘要………………………………………………………………………...……iii
目錄……………………………………………………………………………………v
圖表目錄…………………………………………………………………………….viii
縮寫對照表…………………………………………………………………………....x
壹、 緒論……………………………………………………………………………....1
1.1 MCF-7/WT和MCF-7/ADR細胞的特性和差別…………….………….....1
1.2雌激素受體和黃體酮受體在乳癌細胞的表現和影響………….………....1
1.3雌激素受體 α啟動子位置受到數個轉錄因子的調控………….…………3
1.4 PKc α 在乳癌細胞裡扮演許多重要的調控角色…………..……………...4
1.5 MCF-7/WT和MCF-7/ADR細胞受到VEGF、HIF-1α和MMP 9影響,表現不同程度的血管新生(angiogenesis) ……………………………………..4
1.6 FoxO1、C/EBP β和CtBP1蛋白對MDR1基因啟動子的影響…….………6
1.7 Dicer1、Argonaute2和MCF-7細胞抗藥性的關係……………………...….6
1.8 色胺酮具有逆轉MCF-7/ADR細胞所產生的抗藥性…..…………….7
1.9 利用色胺酮來研究MCF-7/WT轉變成MCF-7/ADR細胞的可能機制………………………………………………………………………….8
貳、 材料及方法………………………………………………………………………9
2.1 實驗儀器………………………………………..……………………………9
2.2 實驗材料…………………………………………..…………………………9
2.3 緩衝液及培養液之製備………………………..…………………………..12
2.4 實驗方法…………………………………………………………………..14
一、 培養基之製備………………………………………………………...14
二、 細胞株的培養………………………………………………………...15
三、 逆轉錄-聚合酶連鎖反應法( RT-PCR ) ……………………………..15
四、 即時定量-聚合酶連鎖反應法( real-time PCR ) …………………….16
五、 西方墨點法 ( Western blot ) ………………………………………...16
六、 EMSA (Electrophoresis mobility shift assay) ………………………..18
七、 SiRNA ( transient transferction ) ……………………………………..19
2.5 統計檢定………………………………………………………………...19
參、 實驗結果………………………………………………………………………..20
3.1 利用RT-PCR觀察tryptanthrin對ER-α、ER-β、PR、HIF-1α、VEGF、 MMP 9、PKc α、PIM-1、Dicer1、Ago2、FoxO1、C/EBP β和CtBP1基因的影響…………………………………………………………………....20
3.2 利用real-time PCR和Western blot去觀察tryptanthrin對MCF-7/WT和MCF-7/ADR細胞中,ER-α、ER-β、PR和PKc α基因的影響…………………………………………………………………………....22
3.3 加入tryptanthrin後MCF-7/WT細胞 PR mRNA的表現先減少, ER-α mRNA的表現才隨著降低………………………………………………....23
3.4 Tryptanthrin會影響ER-α啟動子IEF-1上SP1家族蛋白的鍵結………23
3.5 Tryptanthrin降低MCF-7/ADR細胞MDR1基因的表現,和ER-α的改變沒有直接關…………………………………..…………………………....24
3.6 Tryptanthrin會促進MCF-7/WT細胞的HIF-1α、VEGF和MMP 9等和腫瘤血管增生相關基因的表現……………………………………………....24
肆、 討論……………………………………………………………………………..26
4.1 Tryptanthrin對ER-α、ER-β、PR、HIF-1α、VEGF、MMP 9、PKc α、PIM-1、Dicer1、Ago2、FoxO1、C/EBP β和CtBP1基因的影響……………26
4.2 Tryptanthrin會抑制MCF-7/WT細胞ER-α基因的表現是經由減少SP1和AP2家族蛋白分別與ER-α啟動子上IEF-1區域和ER-α的3`非轉錄區域ERF-1的鍵結……………….……………….……………………………...28
4.3 Tryptanthrin會先抑制PR mRNA的表現之後,ER-α mRNA的表現才會在隨後降低…………………………………………………………………29
4.4 MCF-7/ADR細胞產生抗藥性的機制和ER-α基因的減少並沒有直接相關……………………………………………………………………………29
伍、結論…………………………………………………………………………..…30
陸、圖表………………………………………………………………………..……31
柒、參考文獻…………………………………………………………………..……52
附錄一、色胺酮之化學結構…………………………………………………..……60
dc.language.isozh-TW
dc.subject抗藥性zh_TW
dc.subject乳癌zh_TW
dc.subject色胺酮zh_TW
dc.subjectPRzh_TW
dc.subjectMCF-7/WTzh_TW
dc.subjectER-αzh_TW
dc.subjecttryptanthrinen
dc.subjectbreast canceren
dc.subjectER-αen
dc.subjectMCF-7/WTen
dc.subjectmultidrug resistanceen
dc.subjectPRen
dc.title色胺酮在乳癌细胞MCF-7的作用zh_TW
dc.titleThe Effect of Tryptanthrin in MCF-7 Breast Cancer Cellsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許麗卿,陳擇銘
dc.subject.keyword抗藥性,色胺酮,乳癌,ER-α,PR,MCF-7/WT,zh_TW
dc.subject.keywordbreast cancer,ER-α,MCF-7/WT,multidrug resistance,PR,tryptanthrin,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2009-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved