Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43771
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文貞(Wen-Jen Lin)
dc.contributor.authorGuei-Ru Shiueen
dc.contributor.author薛桂如zh_TW
dc.date.accessioned2021-06-15T02:28:10Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citationAppel L.E., Clair J.H., and Zentner G.M. Formulation and optimization of modified microporous cellulose acetate latex coating for osmotic pumps. Pharmaceutical Research. 9:1664-1667, 1992.
Bell C.L. and Peppas N.A. Water, solute and protein diffusion in physiologically responsive hydrogels of poly(methacrylic acid-g-ethylene glycol). Biomaterials. 17:1203-1218, 1996.
Bindschhaedler C., Gurny R., Doelker E., and Peppas N.A. Journal of Colloid Interfacal Sciences. 108: 75, 1985.
Bodmeier R. and Paeratakul O. Mechanical properties of dry and wet cellulosic and acrylic films prepared from aqueous colloidal polymer dispersions used in the coating of solid dosage forms. Pharmaceutical Research. 11:882-888, 1994.
Budavari S. Cellulose Acetate, In: The Merck Index, 12th ed. Merck & Co. Inc., NJ, pp.2013, 1996a.
Budavari S. Theophylline, In: The Merck Index, 12th ed. Merck & Co., Inc., NJ, pp.9421, 1996b.
Bussemer T., Dashevsky A. and Bodmeier R. A pulsatile drug delivery system based on rupturable coated hard gelatin capsules. Journal of Controlled Release. 93:331-339, 2003.
Chan L.W., Ong K.T. and Heng P.W.S. Novel film modifiers to alter the physical properties of composite ethylcellulose films. Pharmaceutical Research. 22:476-489, 2005.
Chvapil M. Reaction of vaginal tissue of rabbit to inserted sponges made of various materials. Journal of Biomedical Materials Reaserch. 13:1-13, 1979.
Couchman P.R. and Karasz F.E. A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules. 11:117-119, 1978.
Dollery S.R.(Eds.) Theophylline. In: Therapeutic drugs. Churchill Livingstone Inc., UK, pp.T32-T41, 1991.
El-Bagory I.M., Hosny E.A., Al-Suwayeh S. A., Mahrous G.M. and Al-Jenoobi F.I. Effects of sphere size, polymer to drug ratio and plasticizer concentration on the release of theophylline from ethylcellulose microspheres. Saudi Pharmaceutical Journal. 15:213-217, 2007.
El-Mahdi I.M. and Ceasy P.B. Tableting of coated ketoprofen pellets Journal of Microencapsulation. 17:133-144, 2000.
Fassihi A.R. and Munday D.L. Dissolution of theophylline form film-coated slow release mini-tablets in various dissolution media. Journal of Pharmacy and Pharmacology. 41:369-372, 1989.
Fikentscher H., Herrle K. Polyvinylpyrrolidone. Modern Plastics. 23:157-161, 212, 214, 216, 218, 1945.
Fox T.G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Physics Sociality. 1:123, 1956.
Frohoff-Hülsmann M.A., Lippold B.C. and McGinity J.W. Aqueous ethylcellulose dispersion containing plasticizers of different water solubility and hydroxypropyl methyl cellulose as coating material for diffusion pellets I:Drug release rates from coated pellets. International Journal of Pharmaceutics. 177:69-82, 1999.
Gates K.A., Grad H., Birek P. and Lee P.I. A new bioerodible polymer insert for controlled release of metronidazole. Pharmaceutical Research. 194:1605-1609, 1994.
Gennaro A.R.(Eds). Lippincott William & Wilkins, Baltimore, pp.894-902, 2000.
Giron D. Use of DSC robotic systems in pharmaceutical analysis. Journal of Thermal Analysis. 35: 1801-1814, 1989.
Gordon M. and Taylor J.S. Ideal copolymers and the second-order transitions of synthetic rubbers. Part 1. Non-crystalline copolymers. Journal of Applied Chemistry. 2:493-500, 1952.
Guo J. Effects of plasticizers on water permeation and mechnical properties of cellulose acetate : antiplasticization in slightly plasticized polymer film. Drug Development and Industrial Pharmacy. 19: 1541-1555, 1993.
He W., Fan L-F., Xiang B., Li C-L., Du Q., Chang Y-Z. and Cao D-Y. An investigation into the characteristics of chitosan/Kollicoat SR30D free films for colonic drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 72:266-274, 2009.
Herbig S.M., Cardinal J.R., Korsmeyer R.W., and Smith K.L. Asymmetric-membrane tablet coatings for osmotic drug delivery. Journal of Controlled Release. 35: 127-136, 1995.
Hou S., Bi Y., Mao S., Gan L., Y Li., Wang C., Xu N., Zheng Y. and Cheng Q. A controlled porosity osmotic pump system with biphasic release of theophylline. Chemical Pharmaceutical Bull. 55:1574-1580, 2007.
Huatan H., Collett J.H., Attwood D. and Booth C. Preparation and characterization of poly(ε-caprolactone) polymer blends for delivery of protein. Biomaterials. 16:1297-1303, 1995.
Jun S.W., Kim M-S., Jo G.H., Lee S., Woo J.S., Park J-S. and Hwang S-J. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids. Journal of Pharmacy and Pharmacology. 57:1529-1537, 2005.
Kanagale P., Lohray B.B., Misra A., Davadra P. and Kini R. Formulation and optimization of porous osmotic pump–based controlled release system of oxybutynin. AAPS PharmSciTech. 8: E1-E7, 2007.
Karavas E., Georgarakis E. and Bikiaris D. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. European Journal of Pharmaceutics and Biopharmaceutics. 64:115-126, 2006.
Keary C.M. and Heeschen W.A. Wet film dimensions of capsule walls during dip coating. Drug Development and Industial Pharmacy. 28:1059-1076, 2002.
Kumar V., Banker G.S., and Deshpande G.S. Aqueous polymer dispersions, In: Pharmaceutical dosage forms:disperse systems, 2nd ed, Marcel Dekker, Inc.USA. 3:195-241, 1998.
Lecomte F., Siepmann J., Walther M., MacRae R.J. and Bodmeier R. Blends of enteric and GIT-insoluble polymers used for film coating : physicochemical characterization and drug release patterns. Journal of Controlled Release. 89:457-471, 2003.
Lee J.Y., Painter P.C. and Coleman M.M. Hydrogen bonding in miscible polymer blends. 3.Blends involving polymers containing methacrylic acid ether groups. Macromolecules. 21:346-354, 1988.
Lieberman H.A., Rieger M.M., and Banker G.S.(Eds.) Marcel Dekker Inc., New York, pp.202-207, 1998.
Lima I.S., Lazarin A.M. and Airoldi C. Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions. Journal of Biological Macromolecules. 36:79-83, 2005.
Liu L., Khang G., Rhee J.M., and Lee H.B. Monolithic osmotic tablet system for nifedipine delivery. Journal of Controlled Release. 67:309-322, 2000.
Lin W.J. and Lu C.H. Characterization and permeation of microporous poly(ε-caprolactone) films. Journal of Membrane Science. 198:109-118, 2002.
Lin W.J. and Lee H.G. Design of a microporous controlled delivery system for theophylline tablets. Journal of Controlled release. 89:179-187, 2003.
Lin W.J. and Lee H.G. and Wang D.M. The influence of plasticizers on the release of theophylline from microporous-controlled tablets. Journal of Controlled release. 99:415-421, 2004.
Marsh R.E., Riauka T.A. and Mcquarrie S.A. A review of basic principles of fractals and their application to pharmacokinetics. The Quarterly Journal of Nuclear Medicine and Molecular Imaging. 52:278-288, 2008.
Martin A.N. In:Physical Phamacy, Lea & Febiger, Philadephia, London, pp.324-361, 1993.
McEvoy G.K. Theophylline. In:AHFS Drug information 96. ASHSP, Bethesda, Maryland, pp.2654, 1996.
Mehta A.M. and McGinity J.W. (EDs) Processing and equipment considerations for aqueous coating. In: Aqueous Polymeric Coating for Pharmaceutical Dosage Forms, 2nd ed. Marcel Dekker Inc., New York, pp:287-326, 1997.
Meier M.M., Kanis L.A. and Soldi V. Characterization and drug-permeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent. International Journal of Pharmaceutics. 278:99-110, 2004.
Menjoge A.R. and Kulkarni M.G. Blends of reverse enteric polymer with enteric and pH-independent polymers : mechanistic investigations for tailoring drug release. Biomacromolecules. 8:240-251, 2007.
Moskala E.J., Howe S.E., Painter P.C. and Coleman M.M. On the role of intermolecular hydrogen bonding in miscible polymer blends. Macromolecules. 17:1671-1678, 1984.
Narisawa S., Nagata M., Danyoshi C., Yoshino H., Murata K., Hirakawa Y. and Noda K. An organic acid-induced sigmoidal release system for oral controlled-release preparations. Pharmaceutical Research.11:111-116, 1994.
Nazzal S. and El-Malah Y. Novel use of Eudragit® NE 30D/ Eudragit® L 30D-55 blends as functional coating materials in time-delayed drug release applications. International Journal of Pharmaceutics. 357:219-227, 2008.
Nyamweya N. and Hoag S.W. Assessment of polymer-polymer interaction in blends of HPMC and film forming polymers by modulated temperature differential scanning calormetry. Pharmaceutical Research. 17: 625-630, 2000.
Okarter T.U. and Singla K. The effects of plasticizers on the release of metoprolol tartrate from granules coated with a polymethacrylate film. Drug Development and Industrial Pharmacy. 26:323-329, 2000.
Olabisi O., Robeson L.M. and Shaw M.T. In: Polymer-Polymer Miscibility, Academic Press, New York, pp.117-193, 1979.
PDR, Physicians’ desk reference, 50th, Medical Economic Company, Montevale, NJ, 1996.
Peacock A.J. and Calhoun A. In: Polymer chemistry properties and applications. Hanser Gardner Publications, USA, pp.137-170, 2006.
Pongjanyakul T. and Puttipipatkhachorn S. Alginate-magnesium aluminum silicate films: effect of plasticizers on film properties, drug permeation and drug release from coated tablets. International Journal of Pharmaceutics. 333:34-44, 2006.
Porter S.C. Coating of pharmaceutical dosage forms. In: Remington : the science and practice of pharmacy, 20th.
Qussi B. and Suess W.G. The influence of different plasticizers and polymers on the mechanical and thermal properties, porosity and dug permeability of free shellac films. Drug Development and Industrial Pharmacy. 32:403-412, 2006.
Raoand P.R. and Diwan P.V. Permeability studies of cellulose acetate free films for transdermal use : influence of plasticizers. Pharmaceutia Acta Helvetiae. 72:47-51, 1997.
Ritger P.L. and Peppas N.A. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release. 5: 23-36, 1987a.
Ritger P.L. and Peppas N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices Journal of Controlled Release. 5: 37-42, 1987b.
Rowe R.C., Sheskey P.J. and Owen S.(Eds.) Acetone. In: Handbook of Pharmaceutical Excipients, 5th ed. American Pharmaceutical Association, Washington, pp.8-9, 2006.
Rowe R.C., Sheskey P.J. and Owen S.(Eds.) Alcohol. In: Handbook of Pharmaceutical Excipients, 5th ed. Pharmaceutical Press and American Pharmacist Association, London and Chicago, pp.18-20, 2006.
Rowe R.C., Sheskey P.J. and Owen S.(Eds.) Cellulose acetate In: Handbook of Pharmaceutical Excipients, 5th ed. Pharmaceutical Press and American Pharmacist Association, London and Chicago, pp.142-144, 2006.
Rowe R.C., Sheskey P.J. and Owen S.(Eds.) Glycerin. In: Handbook of Pharmaceutical Excipients, 5th ed. Pharmaceutical Press and American Pharmacist Association, London and Chicago, pp.301-303, 2006.
Rowe R.C., Sheskey P.J. and Owen S.(Eds.) Propylene glycol. In: Handbook of Pharmaceutical Excipients, 5th ed. Pharmaceutical Press and American Pharmacist Association, London and Chicago, pp.545-550, 2006.
Rowe R.C., Sheskey P.J. and Owen S.(Eds.) Povidone. In: Handbook of Pharmaceutical Excipients, 5th ed. Pharmaceutical Press and American Pharmacist Association, London and Chicago, pp.611-616, 2006.
Sakata Y., Shiraishi S. and Otsuka M. A novel white film for pharmaceutical coating formed by interaction of calcium lactate pentahydrate with hydroxypropyl methylcellulose. International Journal of Pharmaceutics. 317:120-126, 2006.
Salabat A. and Alinoori M. Viscosity, Density, and Refractive Index of Poly(vinylpyrrolidone) + 1-Propanol and + 2-Propanol at 298.15 K. Journal of Chemical and Engineering Data. 54:1073-1075, 2009.
Savage G. V. and Rhodes C.T. The sustained release coating of solid dosage forms: a historical review. Drug Development and Industrial Pharmacy. 21:93-118, 1995.
Shao Z., Moralesi L., Diaz S. and Muhammadi N.A., Drug release from Kollicoat SR 30D-coated nonpareil beads: evaluation of coating level, plasticizer type, and curing condition. AAPS PharmSciTech, 3:E15, 2002.
Shi P., Zuo Y., Zou Q., Shen J., Zhang L., Li Y. and Morsi.Y.S. Improved properties of incorporated chitosan film with ethyl cellulose microspheres for controlled release. International Journal of Pharmaceutics. 375:67-74, 2009.
Siepmann F., Siepmann J., Walther M., MacRae R.J. and Bodmeier R. Polymer blends for controlled release coatings. Journal of Controlled Release. 125:1-15, 2008.
Siepmann J., Lecomte F., Walther M., MacRae R.J. and Bodmeier R. Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. Journal of Controlled Release. 99:1-13, 2004.
Sigma-Aldrichh product information. http://www.sigma-aldrich.com
Simha R. and Boyer R. General relation involving the glass transition temperature and coefficient of expansion of polymers. Journal of Chemical Physics. 37:1003-1007, 1962.
Stringer J.L. and Peppas N. A. Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethylene oxide) hydrogels. Journal of Controlled Release. 42:195-202, 1996.
Sun G., Zhang X-Z. and Chu C-C. Effect of the molecular weight of polyethylene glycol(PEG) on the properties of chitosan-PEG- poly (N-isopropylacrylamide) hydrogels. Journal of Materials Science: Materials in Medicine. 19:2865-2872, 2008.
Tarvainen M., Sutinen R., Peltonen S., Mikkonen H., Maunus J., Vaha-Heikkila K., Lehto V-P. and Paronen P. Enchanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. European Journal of Pharmaceutical Sciences. 19:363-371, 2003.
Thomas W.C., McGrath L.F., Baarson K.A., Auletta C.S., and Daly I.W. Subchronicoral toxicity of cellulose acetate in rats. Food and Chemical Toxicity. 29:453-458, 1991.
Thombre A.G., Cardinal J.R., DeNoto A.R., and Gibbes D.C. Asymmetric membrane capsules for osmotic drug delivery I. Development of a manufacturing process. Journal of Controlled Release. 57:55-64, 1999.
Trivedi H.C., Patel K.C. and Patel R. D. Transitions of Cellulose Acetate. Journal of Macromolecular Science Chemistry. 19:85-95, 1983.
USP 32/NF 27, United States Pharmacopeial Convention, Inc., Rockville, MD, 2009.
Vyas S.P., Prabakaran D., Singh P., Kanaujia P., Jaganathan K.S., Rawat A. Modified push–pull osmotic system for simultaneous delivery of theophylline and salbutamol : development and in vitro characterization. International Journal of Pharmaceutics. 284:95-108, 2004.
Wade A. and Weller P.J.(Eds.) Polyethylene glycol. In: Handbook of Pharmaceutical Excipients, 2nd ed. American Pharmaceutical Association, Washington, pp. 355-361, 1994a.
Wade A. and Weller P.J.(Eds.) Povidone. In: Handbook of Pharmaceutical Excipients, 2nd ed. American Pharmaceutical Association, Washington, pp.392-401, 1994b.
Wu T., Pan W., Chen J., and Zhang R. Studies of the drug permeability and mechanical properties of free films prepared by cellulose acetate pseudolatex coating system. Drug Development and Industrial Pharmacy. 26:95-102, 2000.
Xu X. and Lee P. I. Programmable drug delivery erodible association polymer system. Pharmaceutical Research. 10:1144-1152, 1993.
Young R.J. and Lovel P.A. In: Introduction to polymers, 2nd ed. Chapman and Hall, pp.310-400, 1991.
Yumane S., Takayama K. and Nagai T. Effect on fractal dimension on drug permeation through porous ethylcellulose film. Journal of Membrane Science. 50:103-109, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43771-
dc.description.abstract醋酸纖維素是一種具有高生物相容性的乙醯化纖維素聚合物,由於其毒性低、安全性高且價格低廉等優點,目前已廣泛應用在藥物遞送系統上,但本身不溶於水,對於酸鹼安定性高,所以無法在胃腸道被分解,若用來包覆錠劑則藥物無法直接穿透半透膜釋出,故本實驗藉由醋酸纖維素共混水溶性孔洞形成劑來改善上述問題,因水溶性孔洞形成劑可在含水媒液中溶出,進而使醋酸纖維素薄膜產生孔洞結構,此多孔性膜衣可達到控釋藥物的目的。
本實驗第一部分先探討由溶媒法製備的醋酸纖維素與孔洞形成劑(聚乙烯吡喀酮與聚乙二醇4000)之共混薄膜,使用FT-IR、DSC與機械性質實驗來研究薄膜的特性。此外藉由水洗出孔洞形成劑的方法來製備孔洞薄膜,並進行擴散實驗,使用孔隙度及SEM照片觀察孔洞外觀及大小。在共混薄膜中,FT-IR的結果顯示醋酸纖維素與這兩種孔洞形成劑皆有極微弱的氫鍵作用;根據DSC結果可發現醋酸纖維素與聚乙烯吡喀酮可混溶,但不與聚乙二醇混溶;在機械性質上,當這兩種孔洞形成劑添加量為≦30%時,對醋酸纖維素薄膜有較佳的塑化效果。另外,在孔洞薄膜的擴散結果可發現,由聚乙二醇所形成的孔洞薄膜有較快的藥物擴散速率,且有較大的孔隙度/扭曲度比值(ε/τ)。
第二部分是利用沾黏包覆方式將含有水溶性孔洞形成劑的醋酸纖維素膜衣包覆在無水茶鹼錠劑表面,製成微孔性控釋錠,使得藥物可經由孔洞或相連性的通道穿透,而達到控釋效果。經由SEM照片可得知,不論添加的孔洞形成劑是聚乙二醇或聚乙烯吡喀酮,膜衣上的孔洞大小與數目會隨著兩者的添加比例增加而增加。此外,在體外溶離試驗的結果發現,藥物的釋放速率會隨著孔洞形成劑添加比例的增加而增加,且聚乙二醇較聚乙烯吡喀酮快。而從薄膜特性研究結果發現聚乙二醇較聚乙烯吡喀酮容易被水完全洗出,顯示藥物的釋放速率與孔洞形成劑的洗出難易與完全與否有相當的關連性。此外,添加親水性塑化劑glycerin、PG及PEG400可促進無水茶鹼穿透CA50%/K1550%膜衣;CA60%/PEG400040%與CA70% /PEG400030%配方膜衣中,PEG400對於藥物的促進效果較為明顯,然而glycerin卻是抑制的。
zh_TW
dc.description.abstractCellulose acetate (CA) is an esterified polymer of cellulose with high biocompatibility. Nowadays, it’s widely used in drug delivery system due to its low toxicity, good safety and low cost. However, it’s water insoluble, non-sensitive to pH, and not degradable in GI tract. The drug can not directly release through the semi-permeable film of CA. In this study, we blended CA with water soluble pore-forming agents to overcome this issue. The pore-forming agents in CA blended films were leached out in aqueous medium and created porous structure to control drug release.
In the first part, the blended films consist of CA and pore-forming agents (PVP K15 and PEG4000) were characterized by FT-TR, DSC and mechanical tests.The porous films were prepared by solvent-casting-leaching method. The FT-IR showed that there existed a weaker interaction between CA and these two pore-forming agents. CA was miscible with PVP K15 but immiscible with PEG4000 based on DSC data. In mechanical tests, these two pore-forming agents showed a better plasticized effect on CA films when under 30% pore-forming agent was added. From SEM pictures, more and bigger pores were observed for porous films blended with more pore-forming agents. These results were consistent with the diffusion data where the permeation coefficient (P) was increased with increasing pore-forming agents.
In the second part, microporous controlled released tablets were prepared by dip-coating method. The pore-forming agents were leached out when tablets exposed to aqueous medium. The drug was released from the inter-connected pores and channels. From in vitro release study, the drug release rate increased with increasing pore-forming agents and PEG4000 enhanced more drug release than PVP K15 did. This was because that PEG4000 can be easily and completely leached out. Moreover, the effect of three different hydrophilic plasticizers (glycerin, PG and PEG400) on drug release rate was investigated. It was found that all plasticizers enhanced drug release from CA50%/K1550% coated tablets. For CA60%/PEG400040% and CA70%/PEG400030% coated tablets, PEG400 played the most effect on increasing drug release, oppositely, glycerin retarded drug release.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:28:10Z (GMT). No. of bitstreams: 1
ntu-98-R96423010-1.pdf: 11545923 bytes, checksum: db145f90ac8688a9c2b2a31865eed481 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
中文摘要………………………………………………………………….i
英文摘要………………………………………………………………...iii目錄…………………………………………………………….…...........v
表目錄…………………………………………………………………...ix
圖目錄………………………………………………………………..….xi
第一章 緒論 1
一、薄膜材料 1
二、共混聚合物較互作用的評估方法 2
三、膜衣包覆的方法 9
第二章 試劑介紹 13
一、醋酸纖維素(CA, cellulose acetate) 13
二、聚乙烯吡喀酮(PVP, polyvinypyrrolidone) 14
三、聚乙二醇(PEG, poly(ethylene glycol)) 15
四、甘油(glycerin, glycerol) 19
五、丙二醇(PG, propylene glycol) 20
六、無水茶鹼(theophylline anhydrous) 21
第三章 實驗動機與目的 23
第四章 實驗試劑與儀器 24
一、試劑 24
二、儀器 24
三、藥品溶液及緩衝液之配製 25
第五章 實驗方法 27
第一部分 薄膜研究
一、醋酸纖維素孔洞薄膜製備 27
二、孔洞薄膜的特性分析 28
(1) 透光度 28
(2) 重量 28
(3) 厚度 29
(4) 薄膜縱切面與表面的型態 29
(5) 孔隙度 29
(6) 傅立葉轉換紅外線光譜圖 30
(7) 示差掃描熱分析 30
(8) 機械性質 30
三、擴散實驗 31
(1) 擴散槽裝置 31
(2) 無水茶鹼定量方法 32
(3) 數據處理 33
第二部分 薄膜包覆錠劑的應用
一、無水茶鹼裸錠之製備 33
二、膜衣包覆無水茶鹼裸錠之製備 34
(1) 不含塑化劑的膜衣 34
(2) 含塑化劑的膜衣 34
三、膜衣包覆錠劑的特性分析 34
(1) 膜衣平均重量 34
(2) 膜衣平均厚度 34
(3) 溶離實驗後膜衣榮出重量百分比 35
(4) 包覆膜衣縱切面及表面形態 35
四、體外溶離實驗 35
(1) 溶離槽裝置 35
(2) 溶離試驗數據的處理 36
第六章 結果 38
第一部分 薄膜研究
一、醋酸纖維素孔洞薄膜外觀 38
二、孔洞薄膜的特性分析 40
(1) 重量 40
(2) 厚度 43
(3) 薄膜縱切面與表面的型態 44
(4) 孔隙度 53
(5) 傅立葉轉換紅外線光譜圖 55
(6) 示差掃描熱分析 58
(7) 機械性質 60
三、擴散實驗 63
第二部分 薄膜包覆錠劑的應用
一、膜衣包覆錠劑的特性分析 68
(1) 裸錠的初始重量 68
(2) 膜衣平均重量 68
(3) 膜衣平均厚度 68
(4) 溶離試驗後膜衣溶出重量百分比 72
二、錠劑的體外溶離實驗 74
(1) 膜衣包覆無水茶鹼錠劑的溶離結果 74
(2) 含塑化劑的膜衣其包覆無水茶鹼錠劑的溶離結果 78
(3) 含不同添加比例塑化劑膜衣其無水茶鹼錠劑的溶離結果 82
三、溶離實驗後膜衣縱切面與表面的型態 85
(1) 不含塑化劑 85
(2) 含塑化劑 94
第七章 討論 101
第一部分 薄膜研究
一、醋酸纖維素孔洞薄膜外觀 101
二、孔洞薄膜的特性分析 101
(1) 重量 101
(2) 厚度 102
(3) 薄膜縱切面與表面的型態 103
(4) 孔隙度 104
(5) 傅立葉轉換紅外線光譜圖 104
(6) 示差掃描熱分析 106
(7) 機械性質 108
三、擴散實驗 110
第二部分 薄膜包覆錠劑的應用
一、膜衣包覆錠劑的特性分析 115
二、錠劑的體外溶離實驗 115
(1) 膜衣包覆無水茶鹼錠劑的溶離結果 115
(2) 含塑化劑膜衣包覆無水茶鹼錠劑的溶離結果 117
(3) 含不同比例塑化劑膜衣包覆無水茶鹼錠劑的溶離結果 118
三、溶離實驗後膜衣縱切面與表面的型態 118
(1) 不含塑化劑 118
(2) 含塑化劑 119
第八章 結論 120
第九章 參考文獻 122










表 目 錄
表1-1 三種流動床包覆方式的比較........................................................................12
表2-1 Povidone於不同K值時的大概分子量.......................................................15
表2-2 聚乙二醇的結構式與分子量........................................................................17
表2-3 不同分子量聚乙二醇之動物毒性試驗........................................................18
表2-4 甘油的應用....................................................................................................19
表2-5 甘油水溶液的黏度........................................................................................20
表2-6 丙二醇的應用................................................................................................21
表5-1 薄膜製備配方中醋酸纖維素與孔洞形成劑的秤取量................................28
表5-2 溶離參數n所代表的意義............................................................................37
表6-1 各配方薄膜水洗前後的重量(mg)................................................................41
表6-2 CA/K15與CA/PEG4000各配方水洗後薄膜的厚度(μm).........................43
表6-3 CA/K15以不同比例混合後的配方薄膜,其官能基在FT-IR中的吸收波
峰位置............................................................................................................56
表6-4 CA/PEG4000以不同比例混合後的配方薄膜,其官能基在FT-IR中的吸
收波位置........................................................................................................57
表6-5 以DSC測量CA/K15配方薄膜的Tg、Tm和 .....................................59
表6-6 以DSC測量CA/PEG4000配方薄膜的Tg、Tm和 ............................59
表6-7 無水茶鹼同日內精密度、準確度試驗結果(去離子水).............................64
表6-8 無水茶鹼異日間精密度、準確度試驗結果(去離子水).............................64
表6-9 各配方膜衣包覆之裸錠初始重量................................................................69
表6-10 各配方膜衣包覆裸錠後膜衣的重量..........................................................70
表6-11 各配方膜衣包覆裸錠後膜衣的平均厚度..................................................71
表6-12 CA/K15 配方膜衣所包覆無水茶鹼錠劑的藥物溶離結果之參數.........76
表6-13 CA/PEG4000配方膜衣所包覆無水茶鹼錠劑的藥物溶離結果之參數.77
表6-14 CA50%/K1550%添加不同塑化劑配方所包覆無水茶鹼錠劑的藥物溶離結
果之參數.........................................................................................................................79
表6-15 CA60%/PEG400040%添加不同塑化劑配方所包覆無水茶鹼錠劑的藥物溶
離結果之參數.................................................................................................................80
表6-16 CA70%/PEG400030%添加不同塑化劑配方所包覆無水茶鹼錠劑的藥物溶
離結果之參數.................................................................................................................81
表6-17 CA50%/K1550%添加0 ~ 30%塑化劑PEG400配方所包覆無水茶鹼錠劑的
藥物溶離結果之參數.....................................................................................................83
表6-18 CA70%/K1530%添加0 ~ 30%塑化劑PEG400配方所包覆無水茶鹼錠劑的
藥物溶離結果之參數.....................................................................................................84



















圖 目 錄
圖1-1 共混聚合物做為膜衣包覆材料以達到控釋藥物遞送系統的方法圖示:藉由
簡單的改變兩種聚合物的共混比例.................................................................1
圖1-2 log tanδ及log G分別'對溫度作圖(a)不可混溶(b)可混溶的兩聚合物之動力
機械性質.............................................................................................................2
圖1-3 介電損失係數ε'與介電常數ε'分別對溫度作圖;(a)可混溶 (b)不可混溶的
兩聚合物.............................................................................................................3
圖1-4 對排聚甲基丙烯酸甲酯和順排聚甲基丙烯酸甲酯以79.4%/20.6% (w/w)比例
混合後,體積變化與溫度的關係圖....................................................................4
圖1-5 聚合物在玻璃轉換溫度範圍時,Cp與dCp/dT分別對溫度做圖..................4
圖1-6 聚苯乙烯/聚2,6-二甲基-1,4-苯氧烯和苯乙烯-對-氯苯乙烯共聚物的共混物
之熱視覺分析曲線.............................................................................................5
圖1-7 TEM下觀察聚甲基丙烯酸甲酯PMMA (亮區)與SAN(暗區)混合的情形....6
圖1-8 散射角為0o時,散射光強度對溫度做圖.........................................................7
圖1-9 使用van Aartsen method在驟冷期間內,測量散射光強度與時間的關.......7
圖1-10 由圖1-9得到的t1/2對溫度做圖,可決定旋節溫度.......................................8
圖1-11 一般常用於膜衣包覆用的包覆缽...................................................................10
圖1-12 一般常用於膜衣包覆流動床的類型...............................................................10
圖1-13 利用沾附法製成之非對稱性膜衣示意圖.......................................................11
圖4-1 錠劑壓模結構圖-圓柱狀錠模..........................................................................26
圖5-1 機械性質測定所使用60 mm*20 mm*70 μm的長條形薄膜示意圖.............31
圖5-2 兩室水平擴散槽裝置.......................................................................................32
圖5-3 美國藥典(USP 32/NF 27)之溶離試驗裝置一:籃網法(basket method)….....36
圖6-1 醋酸纖維素分別與兩種孔洞形成劑以不同添加比例形成的薄膜之水洗前
後透光度的結果.............................................................................................................39
圖6-2 CA/K15與CA/PEG4000配方薄膜中,孔洞形成劑添加百分比與孔洞形成
劑洗出百分比(相對於薄膜重)的關係圖.......................................................................42
圖6-3 CA/K15與CA/PEG4000配方薄膜中,孔洞形成劑添加百分比與孔洞形成
劑洗出百分比(相對於孔洞形成劑添加量)的關係圖...................................................42
圖6-4 CA100%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X)....................45
圖6-5 CA90%/K1510%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X).........45
圖6-6 CA80%/K1520%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X) ........45
圖6-7 CA70%/K1530%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X).........46
圖6-8 CA60%/K1540%水洗後薄膜縱切面之掃描式電子顯微鏡照片(2000X).........46
圖6-9 CA50%/K1550%水洗後薄膜縱切面之掃描式電子顯微鏡照片(1000X).........46
圖6-10 CA90%/PEG400010%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X)47
圖6-11 CA80%/PEG400020%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X)47
圖6-12 CA70%/PEG400030%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X)47
圖6-13 CA60%/PEG400040%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X)48
圖6-14 CA50%/PEG400050%水洗後薄膜縱切面之掃描式電子顯微鏡照片(4000X)48
圖6-15 CA100%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X)........................49
圖6-16 CA90%/K1510%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X).............49
圖6-17 CA80%/K1520%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X) …........49
圖6-18 CA70%/K1530%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X)….........50
圖6-19 CA60%/K1540%水洗後薄膜表面之掃描式電子顯微鏡照(4000X)…............50
圖6-20 CA50%/K1550%水洗後薄膜表面之掃描式電子顯微鏡照片(1000X)….........50
圖6-21 CA90%/PEG400010%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X) ...51
圖6-22 CA80%/PEG400020%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X)....51
圖6-23 CA70%/PEG400030%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X) ...51
圖6-24 CA60%/PEG400040%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X)....52
圖6-25 CA50%/PEG400050%水洗後薄膜表面之掃描式電子顯微鏡照片(4000X)…52
圖6-26 CA/K15(○)與CA/PEG4000(●)配方薄膜中,孔洞形成劑添加重量百分比
與孔隙度的關係........................................................................................................….54
圖6-27 CA/K15(○)與CA/PEG4000(●)配方薄膜中,孔洞形成劑體積百分比與孔
隙度的關係圖.............................................................................................................…54
圖6-28 CA、K15與CA/K15配方薄膜的FT-IR圖譜...............................................56
圖6-29 CA與K15結構式及可能的交互作用示意圖……………..........................56
圖6-30 CA、PEG4000與CA/PEG4000配方薄膜的FT-IR圖譜..............................57
圖6-31 CA與PEG4000結構式及可能的交互作用示意圖.....................................57
圖 6-32 K15 powder的first run與second run結果.................................................58
圖6-33 CA/K15與CA/PEG4000配方薄膜之抗張強度與孔洞形成劑添加百分比的
關係圖......................................................................................................................…...61
圖 6-34 CA/K15與CA/PEG4000配方薄膜之伸長百分比與孔洞形成劑添加百分比
的關係............................................................................................................……….…61
圖 6-35 CA/K15與CA/PEG4000配方薄膜之楊氏係數與孔洞形成劑添百分比的關
係圖................................................................................................................……….…62
圖6-36 CA/K15與CA/PEG4000配方薄膜之至膜斷裂所需施予的功與孔洞形成添
加百分比的關係圖..................................................................……….………………..62
圖6-37 無水茶鹼在去離子水中同日內定量分析校正曲線.....................................65
圖6-38 無水茶鹼在去離子水中異日間定量分析校正曲線.........………………..65
圖6-39 無水茶鹼穿透CA100%及CA/K15配方薄膜的擴散示意圖........................66
圖6-40 無水茶鹼穿透CA100%及CA/PEG4000配方薄膜的擴散示意圖…..........66
圖6-41 以無水茶鹼為模式藥穿透不同配方薄膜時的P值與K15添加百分比的關
係圖….....................................................................................................………………67
圖6-42 以無水茶鹼為模式藥穿透不同配方薄膜時的P值與PEG4000添加百分比
的關係圖.........................................................................................................................67
圖6-43 CA/K15(○)與CA/PEG4000(●)包覆膜衣中孔洞形成劑添加百分比與孔洞
形成劑洗出百分比(相對於薄膜重)的關係圖...............................................................73
圖6-44 CA/K15(○)與CA/PEG4000(●)包覆膜衣中孔洞形成劑添加百分比與孔洞
形成劑洗出百分比(相對於孔洞形成劑添加量)的關係圖...........................................73
圖6-45 無水茶鹼裸錠的藥物溶離結果示意圖. .......................................................75
圖6-46 CA100%與CA/K15配方膜衣所包覆無水茶鹼裸錠的藥物溶離結果示意..76
圖6-47 CA100%與CA/PEG4000配方膜衣所包覆無水茶鹼裸錠的藥物溶離結果示
意圖.................................................................................................................................77
圖6-48 CA50%/K1550%添加不同塑化劑配方所包覆無水茶鹼錠劑的藥物溶離結果
示意圖.............................................................................................................................79
圖6-49 CA60%/PEG400040%添加不同塑化劑配方所包覆無水茶鹼錠劑的藥物溶離
結果示意圖.....................................................................................................................80
圖6-50 CA70%/PEG400030%添加不同塑化劑配方所包覆無水茶鹼錠劑的藥物溶離
結果示意圖.....................................................................................................................81
圖6-51 CA50%/K1550%添加0 ~ 30%塑化劑PEG400配方所包覆無水茶鹼錠劑的藥
物溶離結果示意圖.........................................................................................................83
圖6-52 CA70%/K1530%添加0 ~ 30%塑化劑PEG400配方所包覆無水茶鹼錠劑的藥
物溶離結果示意圖.........................................................................................................84
圖6-53 CA100%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X). ......................86
圖6-54 CA90%/K1510%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X)….........86
圖6-55 CA80%/K1520%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X) ............86
圖6-56 CA70%/K1530%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X).............87
圖6-57 CA60%/K1540%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X)….........87
圖6-58 CA50%/K1550%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X) ............87
圖6-59 CA90%/PEG400010%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X)....88
圖6-60 CA80%/PEG400020%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X)…88
圖6-61 CA70%/PEG400030%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X)....88
圖6-62 CA60%/PEG400040%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X)....89
圖6-63 CA50%/PEG400050%包覆膜衣縱切面之掃描式電子顯微鏡照片(4000X) ...89
圖6-64 CA100%包覆膜衣表面之掃描式電子顯微鏡照片(4000X) ...........................90
圖6-65 CA90%/K1510%包覆膜衣表面之掃描式電子顯微鏡照片(4000X)….............90
圖6-66 CA80%/K1520%包覆膜衣表面之掃描式電子顯微鏡照片(4000X)….............90
圖6-67 CA70%/K1530%包覆膜衣表面之掃描式電子顯微鏡照片(4000X).................91
圖6-68 CA60%/K1540%包覆膜衣表面之掃描式電子顯微鏡照片(4000X) ................91
圖6-69 CA50%/K1550%包覆膜衣表面之掃描式電子顯微鏡照片(4000X) ................91
圖6-70 CA90%/PEG400010%包覆膜衣表面之掃描式電子顯微鏡照片(4000X) .......92
圖6-71 CA80%/PEG400020%包覆膜衣表面之掃描式電子顯微鏡照片(4000X) .......92
圖6-72 CA70%/PEG400030%包覆膜衣表面之掃描式電子顯微鏡照片(4000X) ......92
圖6-73 CA60%/PEG400040%包覆膜衣表面之掃描式電子顯微鏡照片(4000X) .......93
圖6-74 CA50%/PEG400050%包覆膜衣表面之掃描式電子顯微鏡照片(4000X) ......93
圖6-75 CA50%/K1550%/PG30%水洗後薄膜縱切面之掃描式電子顯微鏡照片
(1000X)............................................................................................................................95
圖6-76 CA50%/K1550%/glycerin30%水洗後薄膜縱切面之掃描式電子顯微鏡照片
(1000X) ...........................................................................................................................95
圖6-77 CA50%/K1550%/PEG40030%水洗後薄膜縱切面之掃描式電子顯微鏡照片
(1000X) ...........................................................................................................................95
圖6-78 CA50%/K1550%/PG30%水洗後薄膜表面之掃描式電子顯微鏡照片
(1000X) ...........................................................................................................................96
圖6-79 CA50%/K1550%/glycerin30%水洗後薄膜表面之掃描式電子顯微鏡照片
(1000X) ...........................................................................................................................96
圖6-80 CA50%/K1550%/PEG40030%水洗後薄膜表面之掃描式電子顯微鏡照片
(1000X)............................................................................................................................96
圖6-81 CA60%/PEG400040%/PG30%水洗後薄膜縱切面之掃描式電子顯微鏡照片
(4000X)............................................................................................................................97
圖6-82 CA60%/PEG400040%/glycerin30%水洗後薄膜縱切面之掃描式電子顯微鏡照
片(2000X)........................................................................................................................97
圖6-83 CA60%/PEG400040%/PEG40030%水洗後薄膜縱切面之掃描式電子顯微鏡照
片(4000X)........................................................................................................................97
圖6-84 CA60%/PEG400040%/PG30%水洗後薄膜表面之掃描式電子顯微鏡照片
(2000X)............................................................................................................................98
圖6-85 CA60%/PEG400040%/glycerin30%水洗後薄膜表面之掃描式電子顯微鏡照片
(2000X)............................................................................................................................98
圖6-86 CA60%/PEG400040%/PEG40030%水洗後薄膜表面之掃描式電子顯微鏡照片
(4000X)............................................................................................................................98
圖6-87 CA70%/PEG400030%/PG30%水洗後薄膜縱切面之掃描式電子顯微鏡照片
(2000X)............................................................................................................................99
圖6-88 CA70%/PEG400030%/glycerin30%水洗後薄膜縱切面之掃描式電子顯微鏡照
片(2000X)........................................................................................................................99
圖6-89 CA70%/PEG400030%/PEG40030%水洗後薄膜縱切面之掃描式電子顯微鏡照
片(2000X)........................................................................................................................99
圖6-90 CA70%/PEG400030%/PG30%包覆膜衣表面之掃描式電子顯微鏡照片
(4000X)..........................................................................................................................100
圖6-91 CA70%/PEG400030%/glycerin30%水洗後薄膜表面之掃描式電子顯微鏡照片
(4000X)..........................................................................................................................100
圖6-92 CA70%/PEG400030%/PEG40030%水洗後薄膜表面之掃描式電子顯微鏡照片
(4000X)……………......................................................................................................100
圖7-1 SEMs of sprayed film consisting of HPMC and PEG 6000 blends.................103
圖7-2 Carboxylic acid-ether oxygen交互作用示意圖.............................................105
圖7-3 醋酸纖維素(CA)與K15或PEG4000之間可能的交互作用示意圖.............105
圖7-4 將CA與K15之Tg實驗值代入 [式7-1] ~ [式7-3]所算得CA/K15配方薄
膜Tg預測值之示意圖...................................................................................................108
圖7-5 不同種類聚合物的srtess-strain曲線(a)玻璃態無結晶聚合物(b)橡膠態無結
晶聚合物(c)半結晶聚合物...........................................................................................110
圖7-6 醋酸纖維素薄膜中添加(a)低濃度,(b)中濃度,(c)高濃度的孔洞形成劑
之縱切面示意圖...........................................................................................................112
圖7-7 以CA/K15配方薄膜的穿透係數(P)對孔隙度/扭曲度(ε/τ)比值做圖........114
圖7-8 以CA/PEG4000配方薄膜的穿透係數(P)對孔隙度/扭曲度(ε/τ) 比值做
圖...................................................................................................................................114
dc.language.isozh-TW
dc.subject聚乙二醇zh_TW
dc.subject醋酸纖維素zh_TW
dc.subject聚乙烯吡zh_TW
dc.subject喀酮zh_TW
dc.subject共混聚合物zh_TW
dc.subjectCellulose acetateen
dc.subjectpolymer blendsen
dc.subjectPVP K15en
dc.subjectPEG4000en
dc.title醋酸纖維素共混聚合物的薄膜探討及其應用之研究zh_TW
dc.titleStudy of Cellulose Acetate Blended Films and Its Applicationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王大銘(Da-Ming Wang),陳錦龍(Jiin-Long Chen),邱士娟
dc.subject.keyword醋酸纖維素,聚乙二醇,聚乙烯吡,喀酮,共混聚合物,zh_TW
dc.subject.keywordCellulose acetate,PEG4000,PVP K15,polymer blends,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2009-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
11.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved