請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43750完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江昭皚 | |
| dc.contributor.author | Tzu-Shiang Lin | en |
| dc.contributor.author | 林子翔 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:27:36Z | - |
| dc.date.available | 2010-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | 李明儒。2006。應用無線感測器網路提高隧道防救災機制之研究。碩士論文。桃園:中原大學土木工程研究所。
林冠璋。2007。使用無線感測器網路之自動化害蟲生態監測系統研製。碩士論文。臺北:臺北科技大學機電整合研究所。 曾主平。2008。平衡樹演算法應用於無線感測器網路系統之研究。碩士論文。臺北:臺灣大學生物產業機電工程學系。 陳俊錩。2006。無線感測器之研製並應用於工廠馬達監測。碩士論文。台北:台北科技大學電腦與通訊研究所。 廖誌聖。2008。改良型無線感測器網路MAC協定設計及其在生態監測之應用。碩士論文。臺北:臺北科技大學機電工程系碩士班。 劉新盛。2006。無線居家照護網路之研製。碩士論文。台北:臺北科技大學電腦與通訊研究所。 Al-Karaki, J. N. and A. E. Kamel. 2004. Routing techniques in wireless sensor networks: A Survey. IEEE Wireless Communications. 11(6): 6-28. Akcan, H. and H. Bronnimann. 2007. A new deterministic data aggregation method for wireless sensor networks. Signal Processing. (87): 2965-2977. Akkaya, K. and M. Younis. 2005. A Survey on routing protocols for wireless sensor networks. Ad Hoc Networks. 3(3): 325-349. Akyildiz, I.F., W. Su, Y. Sankarasubramaniam, and E. Cayirci. 2002. A survey on Sensor Networks. IEEE Communications Magazine. 40(8): 102-114. Baronti, P., P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and Y. F. Hu. 2007. Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communication Networks. 30(7): 1655-1695. Cardei, M., and J. Wu. 2005. Handbook of Sensor Networks. CRC Press: New York. 1(19): 1-12. Cormen, T., C. Leiserson, R. Rivest, and C. Stein. 2003. Introduction to algorithms, 2nd ed. New York: McGraw-Hill Science. Culler, D., D. Estrin, and M. Srivastava. 2004. Overview of Sensor Networks. IEEE Computer Society. 37(8): 41-49. Deb, B., S. Bhatnaqar, and B. Nath. 2003. ReInForM: Reliable Information Forwarding Using Multiple Paths in Sensor Networks. In Proc. of 28th Annual IEEE International Conference on Local Computer Networks. pp: 406-415. Ganeriwal, S. , R. Kumar, and M. B. Srivastava. 2003. Timing-sync protocol for sensor networks. In Proc. of the 1st international conference on Embedded networked sensor systems. pp: 138-149. Ghosh, A. and S. K. Das. 2008. Coverage and connectivity issues in wireless sensor networks: A survey. Pervasive and Mobile Computing. 4(3): 303-334. Heinzelman, W. B., A. Chandrakasan, and H. Balakrishnan. 2000. Energy-efficient communication protocol for wireless microsensor networks. In Proc. of the 33rd Annual Hawaii International Conference on System Sciences. (2): 1-10. Heinzelman, W. B., A. Chandrakasan, and H. Balakrishnan. 2002. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications. 1(4): 660-670. Intanagonwiwat, C., R. Covindan, and D. Estrin. 2000. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks. In Proc. of ACM Mobi-Com 2000. pp: 56-67. Japen: Sensirion. 2006. SHT75 datasheet. Available at: http://www.sensirion.com/en/01_humidity_sensors/06_humidity_sensor_sht75.htm. Accessed: 10/01/2008. Kuorilehto, M., M. Hännikäinen ,and T.D. Hämäläinen. 2005. A Survey of Application Distribution in Wireless Sensor Networks. EURASIP Journal on Wireless Communications and Networking. 2005(5): 774-788. Li, M. and Y. Liu. 2007. Underground Structure Monitoring with Wireless Sensor Networks. 6th International Symposium on Information Processing in Sensor Networks. pp: 69-78. Li, C., M. Ye, G. Chen, and J. Wu,An Energy-Efficient Unequal Clustering Mechanism for Wireless Sensor Networks. In Proc. of IEEE Int. Conf. on Mobile Adhoc and Sensor Systems Conference. pp: 598-604. Lindsey, S. and C. Raghavendra. 2002. PEGASIS: Power-Efficient Gathering in Sensor Information Systems. In Proc. of IEEE Aerospace Conference 2002. 3(3): 9-16. Martinez, K., J. K. Hart, and R. Ong. 2004. Environmental sensor networks. Computer. 37(8): 50-56. Mainwaring, A., J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. 2002. Wireless Sensor Networks for Habitat Monitoring. In Proc. of the 1st ACM international workshop on Wireless sensor networks and applications. pp: 88-97. Meguerdichian, S., F. Koushanfar, M. potkonjak, and M. B. Srivastava. 2001. Coverage Problems in Wireless Sensor Networks. In Proc. of INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. (3): 1380-1387. Mollanoori, M. and N.M. Charkari. 2008. LAD: A Routing Algorithm to Prolong the Lifetime of Wireless Sensor Networks. In Proc. of 2008 IEEE International Conference on Networking, Sensing and Control. pp: 983-987. Muruganathan, S.D. and A. O. Fapojuwo. 2008. A Hybrid Routing Protocol for Wireless Sensor Networks Based on a Two-Level Clustering Hierarchy with Enhanced Energy Efficiency. In Proc. of 2008 IEEE Wireless Communications and Networking Conference. pp: 2051-2056. Nakamura, E. F., C. M. S. Figueiredo, F. G. Nakamura, and A. A. F. Loureiro. 2007. Diffuse: A topology building engine for wireless sensor networks. Signal Processing. (87): 2991-3009. Niezen, G., G. P. Hancke, I. J. Rudas, and L. Horvath. 2007. Comparing Wireless Sensor Network Routing Protocols. In Proc. of AFRICON 2007. pp: 1-7. Peng, S., S. X. Yang, S. Gregori, and F. Tian. 2008. An adaptive QoS and energy-aware routing algorithm for wireless sensor networks. In Proc. of 2008 International Conference on Information and Automation. pp: 578-583. Pokorny, J. 2006. Database architectures: Current trends and their relationships to environmental data management. Environment Modelling and Software. 21(11): 1579-1586. Qian, Y., L. Kejie, and D. Tipper. 2007. A design for secure and survivable wireless sensor networks. IEEE Wireless Communications. 14(5): 30-37. Romer, K. and F. Mattern. 2004. The Design Space of Wireless Sensor Networks. IEEE Wireless Communications. 11(6): 54-61. Ruqin, R. and G. Mazzini. 2004. A simple and efficient MAC-routing integrated algorithm for sensor network. 2004 IEEE International Conference on Communications. (6): 3499-3503. Shi, E. and A. Perrig. 2004. Designing Secure Sensor Networks. IEEE Wireless Communications. 11(6): 38-43. Sridhar, P., A.M. Madni, and M. Jamshidi. 2007. Intelligent Object-Tracking using Sensor Networks. 2007 IEEE Sensors Applications Symposium. pp: 1-5. Tsai, Y. R. 2007. Coverage-Preserving Routing Protocols for Randomly Distributed Wireless Sensor Networks. IEEE Transactions on Wireless Communications. 6(4): 1240-1245. USA: Atmel Corporation. 2008. ATmega128 Datasheet. Available at: http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf. Accessed: 09/15/2008. USA: Texas Instruments. 2007. CC2420 Datasheet. Available at: http://focus.ti.com/lit/ds/symlink/cc2420.pdf. Accessed: 09/15/2008. USA: Texas Instruments. 2007. MSP430 Datasheet. Available at: http://focus.ti.com/lit/ds/symlink/msp430f1101a.pdf. Accessed: 10/01/2008. USA: Berkeley. 2008. TinyOS forum. Available at: http://www.tinyos.net. Accessed: 10/01/2008. USA: Crossbow. 2008. IRIS Datasheet. Available at: http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf Accessed: 09/27/2008. USA: ZigBee Alliance. 2008. ZigBee Logo and Trademark details. Available at: http://www.zigbee.org/About/ZigBeeIntro/tabid/220/Default.aspx. Accessed: 10/01/2008. USA: Sentilla. 2008. Tmote-sky datasheet. Available at: http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf. Accessed: 10/01/2008. Wang, N., N. Zhang, and M. Wang. 2006. Wireless sensor in agriculture and food industry─Recent development and future perspective. Computers and Electronic in Agriculture. 2006(50): 1-14. Warrier, A., S. Park, J. Min, and I. Rhee. 2007. How much energy saving does topology control offer for wireless sensor network? – A practical study. Computer Communication. 30(14-15): 2867-2879. Werner-Allen, G., K. Lorincz, M. Ruiz, O. Marcillo, J. B. Johnson, J. Lees, and M. Welsh. 2006. Deploying a Wireless Sensor Network on Active Volcano. IEEE Internet Computing. 10(2): 18-25. Wood, A. D., J. A. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. Fang, and R. stoleru. 2008. Context-aware wireless sensor networks for assisted living and residential monitoring. IEEE Network. 22(4): 26-33. Xu, Y., J. Heidemann, and D. Estrin. 2001. Geography-informed Energy Conservation for Ad-hoc Routing. In Proc. of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and Networking 2001. pp: 70-84. Yang, L., C. Feng, J. W. Rozenblit, and H. Qiao. 2006. Adaptive Tracking in Distribution Wireless Sensor Networks. 13th Annual IEEE Engineering of Computer Based System. pp: 1-9. Ye, F., A. Chen, S. Liu, and L. Zhang. 2001. A scalable solution to minimum cost forwarding in large sensor networks. In Proc. of the tenth International Conference on Computer Communications and Networks (ICCCN). pp: 304-309. Ye, W., J. Heidemann, and D. Estrin. 2002. An energy-efficient MAC protocol for wireless sensor networks. In Proc. of INFOCOM 2002 Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. pp: 1567-1576. Yi, W., J. Heidemann, and D. Estrin. 2004. Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks. IEEE/ACM Transaction on Networking. 12(3): 493-506. Yu, Y., D. Estrin, and R. Govindan. 2001. Geographical and Energy-Aware Routing: A Recursive Data Dissemination Protocol for Wireless Sensor Networks. UCLA Computer Science Department Technical Report. UCLA-CSD TR-01-0023. Zabin, F., S. Misra, I. Woungang, H. F. Rashvand, N.-W. Ma, and M. A. Ali. 2008. REEP: data-centric, energy-efficient and reliable routing protocol for wireless sensor networks. IET Communication. 2(8): 995-1008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43750 | - |
| dc.description.abstract | 無線感測器網路因受到各感測器節點電量、通訊能力及運算能力的限制,使得無線感測器網路系統在實際應用中會有諸多問題需要考量。為改善無線感測器網路的使用壽命,過去許多研究學者利用各種路由演算法來調整節點間的資料傳遞。目前大多數演算法僅多半針對能量平衡、資料傳輸可靠度及節點分群調度方式加以探討。針對軍事偵測、保全系統及老人居家看護等應用,感測器節點在所欲監測的區域內應必須能達到100 % 覆蓋率才能準確偵測任一重要事件,因此覆蓋率因素應當納入感測器網路運作考量之中。因此,吾人提出一高覆蓋率動態路由演算法,透過模擬驗證此演算法能持續維持百分之百覆蓋率且增加網路的運作時間,並透過實作實驗驗證此演算法於實際網路應用之可行性。
在本研究中吾人提出一動態路由演算法,演算法針對能量均衡消耗及高覆蓋率的特性來進行群首挑選機制。利用經過覆蓋率考量後挑選出多餘的節點,讓這些節點主要用於群首節點運作及資料轉傳,藉以延長網路持續維持100 % 覆蓋率的運作時間,並依據傳輸能量消耗與節點剩餘能量來進行動態路由挑選機制。模擬中針對群首挑機制及動態路由挑選機制進行最佳參數分析,並與其他已經發表過的演算法進行性能比較,模擬結果顯示高覆蓋率動態路由演算法有效增加59 %的系統運作時間。 過去大多數所發表的演算法僅透過模擬方式分析性能,為了驗證本演算法確實可於實際應用中使用,本研究之演算法透過NesC語言撰寫,架構於TinyOS 系統上,實際在OctopusII節點上運作。為了驗證及分析本演算法的相關性能,分別於實驗室內及戶外環境進行相關實驗測試,實驗結果顯示動態路由機制確實能有效運作並提升資料回傳率。 | zh_TW |
| dc.description.abstract | There are a lot of issues which need to be considered due to the limited power, the communication range, and the programming ability of wireless sensor nodes. In order to improve the lifetime of wireless sensor networks (WSNs), a number of routing algorithms have been proposed to adjust the data transmission between sensor nodes. Besides the energy efficiency, however, reliability of data transmission and cluster forming method, maintenance of the sensing coverage over the entire monitored area are also essential. In construction of projects that involve operational strategies to responds to specific emergency events such as medical healthcare, battlefield surveillance, or illegal smuggling, the primary concern is to preserve all valuable data acquired from the targeted area without any losing. Hence, this work proposed a novel energy-aware coverage-preserving hierarchical routing (ECHR) algorithm. The performance of ECHR algorithm was evaluated by simulations. In simulations, the ECHR algorithm can maximize the on duty time of full coverage. This work also applied the ECHR algorithm in wireless sensor node with OctopusII platform.
The basic idea of the proposed ECHR algorithm is to take the remaining energies of the nodes as well as the coverage redundancy of its sensing ranges into consideration while selecting cluster heads. Intuitively, the sensor nodes deployed in a densely populated area have the higher probability to be selected as cluster heads in each round. These nodes are frequently chosen to be cluster heads, because the loss of nodes from the densely populated area is not significant for the network coverage. In addition, an energy-aware hierarchical routing mechanism was also proposed to determine the optimal route. Extensive series simulations were conducted to analyze the performance of the ECHR algorithm applying to the network with different weight factors of the cluster head selection mechanism and the adaptive energy-aware hierarchical routing mechanism. The simulation results demonstrate that the proposed protocol is able to increase the duration of network on duty and provide up to 59 % of extra service time with 100% sensing coverage ratio comparing with other existing protocols. Most presented researches about routing algorithms only evaluated the performance under simulations. In order to evaluate the feasibility of ECHR algorithm in realistic applications, this work has developed the ECHR algorithm with NesC program on TinyOS. All of experimental tests in laboratory and outdoor environment used wireless sensor nodes, OcotpusII. The experimental results demonstrate that the adaptive routing mechanism of the ECHR algorithm is able to reduce the data loss rate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:27:36Z (GMT). No. of bitstreams: 1 ntu-98-R96631025-1.pdf: 6652431 bytes, checksum: 4f1f0cce96e8ebd5c0d9896e5ce1e786 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 前言 1 1.1研究背景 1 1.2文獻探討 3 1.2.1 WSN路由協定種類─依據網路型態分類 3 1.2.1.1 平面式路由(Flat Routing) 4 1.2.1.2 階層式路由(Hierarchical Routing) 5 1.2.1.3 地理資訊式路由(Geographical Routing) 9 1.2.2無線感測器路由演算法─依據應用狀況分類 9 1.2.2.1集中式路由演算法 10 1.2.2.2分散式路由演算法 11 1.2.3覆蓋率考量路由演算法 12 1.3研究動機及目的 13 1.4論文架構 15 第二章 無線感測器網路介紹 16 2.1無線感測器網路系統架構 16 2.2無線感測器節點 18 2.3 ZigBee協定 20 2.4無線感測器網路作業系統—TinyOS 22 第三章 高覆蓋率動態路由演算法 24 3.1無線通訊模型 24 3.2覆蓋率模型 26 3.3高覆蓋率動態路由演算法 28 3.3.1群首挑選機制 29 3.3.2動態路由挑選機制 31 3.4演算法相關參數分析 31 3.4.1群首挑選機制參數分析 33 3.4.2動態路由挑選機制參數分析 35 3.5演算法性能驗證分析 38 第四章 感測器網路建置與性能驗證分析 44 4.1 感測器節點性能測試 44 4.1.1 SuperNode天線指向性測試 44 4.1.2 平台端感測器節點天線適用性測試 46 4.1.3 OctopusII通訊距離及資料回傳率測試 48 4.1.4 多跳路由性能測試實驗 50 4.2 動態路由演算法運作流程與架構 52 4.2.1路由係數 53 4.2.2資訊交換程序 54 4.2.3同步設定程序 56 4.2.4資料回傳程序 57 4.2.5節點重新加入網路機制 59 4.3 室內感測器網路平台實驗 60 4.3.1 節點重新加入網路測試 65 4.4 戶外感測器網路平台實驗 67 第五章 結論與未來工作 69 5.1 結果討論 69 5.2 未來研究方向 70 參考文獻 72 作者簡歷 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 覆蓋率 | zh_TW |
| dc.subject | 動態路由演算法 | zh_TW |
| dc.subject | 無線感測器網路 | zh_TW |
| dc.subject | wireless sensor network (WSN) | en |
| dc.subject | sensing coverage problem | en |
| dc.subject | Adaptive routing algorithm | en |
| dc.title | 覆蓋率優先動態路由演算法應用於無線感測器網路之研究 | zh_TW |
| dc.title | Study of Coverage Precedence Adaptive Routing Algorithm for Wireless Sensor Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭瑛東,王永鐘,曾傳蘆 | |
| dc.subject.keyword | 動態路由演算法,覆蓋率,無線感測器網路, | zh_TW |
| dc.subject.keyword | Adaptive routing algorithm,sensing coverage problem,wireless sensor network (WSN), | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 6.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
