請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43723完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林達德(Ta-Te Lin) | |
| dc.contributor.author | Lun-Cheng Chu | en |
| dc.contributor.author | 朱倫成 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:26:53Z | - |
| dc.date.available | 2014-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | 1. Amenta N., M. Bern and M. Kamvysselis. 1998. A new Voronoi-based surface reconstruction algorithm. In Proceedings of ACM SIGGRAPH 1998. 415-421.
2. Amenta N., S. Choi and R. Kolluri. 2001. The power crust. In Proceedings of 6th ACM Symposium on Solid Modeling. 249-260. 3. Arun, K.S., T. S. Huang and S.D. Blostein. 1987. Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence. 698-670. 4. Bajaj, C. L., and F. Bernarjini, G. Xu. 1995. Automatic reconstruction of surfaces and scalar Fields from 3D scans. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. 109-118. 5. Barnard, S. T., and M. A. Fischler. 1982. Computational Stereo. ACM Computing Surveys (CSUR). 553-572. 6. Besl P., and N. McKay. 1992. A method for Registration of 3–D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 14(2):239 – 256. 7. Blais, G., and Levine, M. 1995. Registering Multiview Range Data to Create 3D Computer Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence. 17(8): 820-824. 8. Blais, F. 2004. Review of 20 years of range sensor development. Journal of electronic imaging. 13: 231. 9. Brown, M. Z., D. Burschka, and G.. D. Hager. 2003. Advances in Computational Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence: 993-1008. 10. Burdea G.., and P. Coiffet. 1994. Virtual Reality Technology, John Wiley, New York. 11. Chang, H.K. 2004. A Geographic information system integrated with internet technology and virtual reality。Master thesis. Taipei: Department of Bio-Industrial Mechatronics Engineering College of Bioresources and Agriculture National Taiwan University. 12. Chen, Y., and G. Medioni. 1991. Object Modeling by Registration of Multiple Range Images. Proc. IEEE Conf. on Robotics and Automation. 2724-2729. 13. Chen, C., Y. Hung, and J. Cheng. 1998. A Fast Automatic Method for Registration of Partially-Overlapping Range Images. Proc. ICCV. 242-248. 14. Cobb, D.A., and A. Olivero. 1997. Online GIS Service. Journal of Academic Librarianship. 23(6): 484-497. 15. Cox, Allan B., and G. Fred. 1997. An overview to geographic information system. Journal of Academic Librarianship. 23(6), 449-461. 16. Dhond, U. R., and J. K. Aggarwal. 1989. Structure from stereo - a review. IEEE Transactions on Systems, Man and Cybernetics. 19: 1489-1510. 17. Dorai, C., J. Weng, and A. Jain. 1998. Registration and Integration of Multiple Object Views for 3D Model Constrution. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI. 20(1): 83-89. 18. Durlach, N.I., and A.S. Mavor, eds. 1995. Virtual Reality—Scientific and Technological Challenges, National Research Council, Washington, D.C. 19. Gelfand, N., N. J. Mitra, L. J. Guibas, and H. Pottmann. 2005. Robust global registration. In Symposium on Geometry Processing. 2(3): 5. 20. Guehring, J. 2001. Reliable 3D surface acquisition, registration and validation using statistical error models. IEEE 3DIM’01,Quebec. 224-231. 21. Hong, G.L. 2007. Development of a web VR-GIS using stereo vision. Master thesis. Taipei: Department of Bio-Industrial Mechatronics Engineering College of Bioresources and Agriculture National Taiwan University. 22. Hoppe, H., T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle. 1994. Piecewise Smooth Surface Reconstruction. Proceedings of SIGGRAPH. 94: 295-302. 23. Hsiung, Y.K. 2005. Development of a virtual reality GIS using stereo reconstruction. Master thesis. Taipei: Department of Bio-Industrial Mechatronics Engineering College of Bioresources and Agriculture National Taiwan University. 24. Kolmogorov, V., and R. Zabih. 2002. Multi-camera scene reconstruction via graph cuts. European Conference on Computer Vision. 82-96. 25. Liu, L., and I. Stamos. 2005. Automatic 3D to 2D registration for the photorealistic rendering of urban scenes. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2. 26. Lu, F., and E. Milios. 1997. Globally Consistent Range Scan Alignment for Environment Mapping. Autonomous Robots 4:333-349. 27. Ohtake, Y., A. G. Belyaev, and H.-P. Seidel. 2005. An integrating approach to meshing scattered point data. In ACM Symposium on Solid and Physical Modeling. 61-69. 28. Rusinkiewicz, S., and M. Levoy. 2001. Efficient variants of the ICP algorithm. Proc. 3DIM. 145-152. 29. Scharstein, D., and R. Szeliski. 2002. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision. 47:7-42. 30. Sequeira, V., K. Ng., E. Wolfart, J. G.. M. Gonalves, and D. Hogg. 1999. Automated reconstruction of 3D models from real environments. 54:1-22. 31. Turk, G., and M. Levoy. 1994. Zippered Polygon Meshes from Range Images. Proc. SIGGRAPH. 311-318. 32. Zhang, Z. 2000. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1330-1334. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43723 | - |
| dc.description.abstract | 本研究整合環場影像及雷射掃描技術建構出大尺度之虛擬實境 (Virtual Reality, VR) 模型。相對於傳統虛擬實境之建構多為小尺度,本研究所發展的方法可構建大範圍空間尺度之虛擬實境模型—如擁有數十棟建築物之校園環境—且具有真實環境影像之貼圖材質。建構過程主要分為三個步驟:空間資訊擷取、三維模型建立及多場景接合。空間資訊擷取的過程中,藉由安排所獲取之資訊,可降低模型建立的複雜度,達成近即時運算之場景建模系統;單一場景資訊擷取所需時間約為12分鐘。三維虛擬模型的建立的步驟係利用空間資訊排列之規則將模型網格化,並配合Delaunay Triangulation 最佳化網格點並減量至60%,再利用環場影像於邊界條件上與模型具一致性之特點,簡化影像材質之對應。在多場景接合的方法上,本研究發展一套全域性接合方法,將三維空間資料簡化為二維資訊,並進行資料點擴展及型態分析,以提高接合正確率。以此接合方法於454.9公尺之長距離進行地圖重建實驗,誤差為0.1%。接合正確率與空間環境複雜度相關,實驗於具有規則特徵的環境,如具有規則牆面之臺大體育館,在平均距離46.7公尺,標準差8.9公尺的條件下,接合正確率可達100%。而在較複雜之環境,如臺大椰林大道之多植栽環境,在平均距離44.9公尺,標準差5.8公尺條件下,接合正確率則降為72%。若應用此接合方法於長寬十數公尺之室內環境,亦能正確接合。相對於傳統之迭代最近點算法 (Iterative Closest Point, ICP),此接合法不需初始估測值,且在5分鐘內可完成計算,若給予估測值則約能在10秒內完成。本研究所發展的方法將可應用於模型重建、環境導覽及都市開發規劃等諸多應用。 | zh_TW |
| dc.description.abstract | This research proposes a method to reconstruct real-world objects in large-scale virtual reality by integrating the information from panoramic images and data acquired with a laser range sensor. Compared with most virtual reality applications, the proposed method is capable of building large-scale virtual reality models such as a campus environment including many buildings, and the reconstructed building's appearance is photorealistic. The procedure for building the virtual reality models mainly consists of three phases: the acquisition of the space information, reconstruction of 3D model, and integration of multiple scenes to form a large-scale virtual reality model. In the first phase of data acquisition, the complexity of the model reconstruction is reduced by properly arranging the acquired point cloud data. Therefore, the reconstruction of the 3D model is nearly real time. The time required to acquire the 3D point cloud data for a single scene was about 12 minutes. The reconstruction of 3D virtual reality model utilizes the well organized collected spatial data for meshing which also applies Delaunay triangulation for a data reduction to 60%. The texture mapping process is also simplified based on the correspondence of boundary conditions in the panorama image and the 3D model. Moreover, a global registration method was developed. It initially coverts the 3D spatial data into 2D information and then applies spatial propagation and shape analysis filters for enhancing the matching probability. When applying this method on a reconstruction of a map 454.9 meters in length, the error was 0.1%. The matching probability is affected by the complexity of environment to be reconstructed. When applying the method on an environment with regular features, such as the NTU gymnasium with mostly regular wall surfaces and with an average scanning distance of 46.8m and standard deviation of 8.8m, the matching probability was 100%. In a separate experiment for a more complex environment such as the NTU Royal Palm Blvd. with many trees and irregular structures, the matching probability decreases to 72%. The method was also successfully applied for the reconstruction of an indoor environment which is ten meters in width and height. Comparing with the iterative closest point (ICP) method, our approach has the advantage that it does not require initial guess for the registration of multiple scenes. The registration process can be accomplished in 5 minutes. Moreover, it can be completed in 10 seconds if the initial guess is given. The developed method can be used in various applications such as model reconstruction, tour guiding, and the city planning. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:26:53Z (GMT). No. of bitstreams: 1 ntu-98-R96631017-1.pdf: 5049393 bytes, checksum: 5d2535bda401ba944efb951a580028b4 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii List of Figures ix List of Tables xvi Chapter 1 Introduction 1 1.1 Preface 1 1.2 Objectives 2 1.3 Thesis Organization 3 Chapter 2 Literature Review 4 2.1 Virtual Reality (VR) 4 2.2 Geography Information System (GIS) 5 2.2.1 Features of GIS 7 2.2.2 Formats of GIS 8 2.2.3 Functions of GIS 9 2.2.4 Web GIS 10 2.2.5 VR GIS 10 2.3 3D Space Reconstruction 11 2.3.1 Stereo Vision 11 2.3.2 Range Sensor 15 2.3.3 Multi Sensors 18 2.3.4 Data Reduction 19 2.4 Registration 20 Chapter 3 Materials and Methods 23 3.1 System Architecture 23 3.1.1 Hardware 23 3.1.2 Software 24 3.2 Single Scene Reconstruction 27 3.2.1 Spatial Data Acquisition 28 3.2.2 Coordinate Transformation 31 3.2.3 Surface Reconstruction 32 3.2.4 Texture Mapping 36 3.3 Multiple Scene Registration 38 3.3.1 Sampling 39 3.3.2 Preprocess 42 3.3.3 Registration 48 3.4 Visualization 49 Chapter 4 Result and Discussion 50 4.1 Virtual Reality Software 50 4.2 Single Scene Reconstruction 52 4.2.1 Data acquisition 52 4.2.2 Coordinate Transformation 53 4.2.3 Surface Reconstruction 54 4.2.4 Texture Mapping 58 4.2.5 Data Reduction 60 4.3 Multiple Scenes Registration 63 4.3.1 Preprocess 63 4.3.2 Comparing to Iterative Closest Point (ICP) Method 76 4.3.3 Large Scale Issue 88 4.4 Cases Demonstration 92 Chapter 5 Conclusions and Suggestions 104 5.1 Conclusions 104 5.2 Suggestions 105 References 106 | |
| dc.language.iso | en | |
| dc.subject | 紋理映射 | zh_TW |
| dc.subject | 虛擬實境 | zh_TW |
| dc.subject | 環場影像 | zh_TW |
| dc.subject | 對位 | zh_TW |
| dc.subject | 視覺化 | zh_TW |
| dc.subject | Panorama Image | en |
| dc.subject | Virtual Reality | en |
| dc.subject | Texture Mapping | en |
| dc.subject | Visualization | en |
| dc.subject | Registration | en |
| dc.title | 整合環場影像及雷射掃描於大尺度虛擬實境模型之構建 | zh_TW |
| dc.title | Integration of Panorama Image and Laser Scanning to Build Large-Scale Virtual Reality Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周瑞仁(Jui-Jen Chou),萬一怒(Ye-Nu Wan) | |
| dc.subject.keyword | 虛擬實境,環場影像,對位,視覺化,紋理映射, | zh_TW |
| dc.subject.keyword | Virtual Reality,Panorama Image,Registration,Visualization,Texture Mapping, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
