Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43710
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康照洲
dc.contributor.authorYu-Chen Hsuen
dc.contributor.author許育禎zh_TW
dc.date.accessioned2021-06-15T02:26:34Z-
dc.date.available2012-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citationAcker, T., and Plate, K.H. (2003). Role of hypoxia in tumor angiogenesis-molecular and cellular angiogenic crosstalk. Cell Tissue Res 314, 145-155.
Baird, W.M., Hooven, L.A., and Mahadevan, B. (2005). Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45, 106-114.
Barouki, R., Coumoul, X., and Fernandez-Salguero, P.M. (2007). The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 581, 3608-3615.
Beischlag, T.V., Luis Morales, J., Hollingshead, B.D., and Perdew, G.H. (2008). The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18, 207-250.
Bicknell, R., and Harris, A.L. (2004). Novel angiogenic signaling pathways and vascular targets. Annu Rev Pharmacol Toxicol 44, 219-238.
Breier, G., Damert, A., Plate, K.H., and Risau, W. (1997). Angiogenesis in embryos and ischemic diseases. Thromb Haemost 78, 678-683.
Bunger, M.K., Moran, S.M., Glover, E., Thomae, T.L., Lahvis, G.P., Lin, B.C., and Bradfield, C.A. (2003). Resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor. J Biol Chem 278, 17767-17774.
Burstyn, I., Kromhout, H., Partanen, T., Svane, O., Langard, S., Ahrens, W., Kauppinen, T., Stucker, I., Shaham, J., Heederik, D., et al. (2005). Polycyclic aromatic hydrocarbons and fatal ischemic heart disease. Epidemiology 16, 744-750.
Bussolino, F., Mantovani, A., and Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends Biochem Sci 22, 251-256.
Cacciola, R.R., Guarino, F., and Polosa, R. (2007). Relevance of endothelial-haemostatic dysfunction in cigarette smoking. Curr Med Chem 14, 1887-1892.
Carmeliet, P., and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249-257.
Chen, I., Hsieh, T., Thomas, T., and Safe, S. (2001). Identification of estrogen-induced genes downregulated by AhR agonists in MCF-7 breast cancer cells using suppression subtractive hybridization. Gene 262, 207-214.
Chen, S., Operana, T., Bonzo, J., Nguyen, N., and Tukey, R.H. (2005). ERK kinase inhibition stabilizes the aryl hydrocarbon receptor: implications for transcriptional activation and protein degradation. J Biol Chem 280, 4350-4359.
Choi, H.J., Eun, J.S., Kim, B.G., Kim, S.Y., Jeon, H., and Soh, Y. (2006). Vitexin, an HIF-1alpha inhibitor, has anti-metastatic potential in PC12 cells. Mol Cells 22, 291-299.
Choi, H.J., Song, B.J., Gong, Y.D., Gwak, W.J., and Soh, Y. (2008). Rapid degradation of hypoxia-inducible factor-1alpha by KRH102053, a new activator of prolyl hydroxylase 2. Br J Pharmacol 154, 114-125.
Cines, D.B., Pollak, E.S., Buck, C.A., Loscalzo, J., Zimmerman, G.A., McEver, R.P., Pober, J.S., Wick, T.M., Konkle, B.A., Schwartz, B.S., et al. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527-3561.
Cogliano, V.J., Baan, R.A., Straif, K., Grosse, Y., Secretan, B., and El Ghissassi, F. (2008). Use of mechanistic data in IARC evaluations. Environ Mol Mutagen 49, 100-109.
Crews, S.T. (1998). Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev 12, 607-620.
Czernin, J., and Waldherr, C. (2003). Cigarette smoking and coronary blood flow. Prog Cardiovasc Dis 45, 395-404.
Daley, W.P., Peters, S.B., and Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121, 255-264.
Denison, M.S., and Nagy, S.R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43, 309-334.
Fernandez-Salguero, P.M., Ward, J.M., Sundberg, J.P., and Gonzalez, F.J. (1997). Lesions of aryl-hydrocarbon receptor-deficient mice. Vet Pathol 34, 605-614.
Fong, G.H. (2008). Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11, 121-140.
Freedman, S.B., and Isner, J.M. (2001). Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol 33, 379-393.
Garrick, R.A., Woodin, B.R., and Stegeman, J.J. (2005). Cytochrome p4501a induced differentially in endothelial cells cultured from different organs of Anguilla rostrata. In Vitro Cell Dev Biol Anim 41, 57-63.
Giannone, J.V., Li, W., Probst, M., and Okey, A.B. (1998). Prolonged depletion of AH receptor without alteration of receptor mRNA levels after treatment of cells in culture with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Pharmacol 55, 489-497.
Gradin, K., McGuire, J., Wenger, R.H., Kvietikova, I., fhitelaw, M.L., Toftgard, R., Tora, L., Gassmann, M., and Poellinger, L. (1996). Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol 16, 5221-5231.
Han, Z., Miwa, Y., Obikane, H., Mitsumata, M., Takahashi-Yanaga, F., Morimoto, S., and Sasaguri, T. (2008). Aryl hydrocarbon receptor mediates laminar fluid shear stress-induced CYP1A1 activation and cell cycle arrest in vascular endothelial cells. Cardiovasc Res 77, 809-818.
Heba, G., Krzeminski, T., Porc, M., Grzyb, J., Ratajska, A., and Dembinska-Kiec, A. (2001). The time course of tumor necrosis factor-alpha, inducible nitric oxide synthase and vascular endothelial growth factor expression in an experimental model of chronic myocardial infarction in rats. J Vasc Res 38, 288-300.
Hoffmann, D., Djordjevic, M.V., and Hoffmann, I. (1997). The changing cigarette. Prev Med 26, 427-434.
Hsu, Y.-T. (2007). Inhibition of Benzo[a]pyrene on bFGF- and VEGF-induced Angiogenesis. 國立台灣大學毒理學研究所碩士論文.
Ichihara, S., Yamada, Y., Gonzalez, F.J., Nakajima, T., Murohara, T., and Ichihara, G. (2009). Inhibition of ischemia-induced angiogenesis by benzo[a]pyrene in a manner dependent on the aryl hydrocarbon receptor. Biochem Biophys Res Commun 381, 44-49.
Ichihara, S., Yamada, Y., Ichihara, G., Nakajima, T., Li, P., Kondo, T., Gonzalez, F.J., and Murohara, T. (2007). A role for the aryl hydrocarbon receptor in regulation of ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27, 1297-1304.
Ikuta, T., Eguchi, H., Tachibana, T., Yoneda, Y., and Kawajiri, K. (1998). Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem 273, 2895-2904.
Ivnitski-Steele, I.D., Friggens, M., Chavez, M., and Walker, M.K. (2005). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibition of coronary vasculogenesis is mediated, in part, by reduced responsiveness to endogenous angiogenic stimuli, including vascular endothelial growth factor A (VEGF-A). Birth Defects Res A Clin Mol Teratol 73, 440-446.
Ivnitski-Steele, I.D., and Walker, M.K. (2003). Vascular endothelial growth factor rescues 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibition of coronary vasculogenesis. Birth Defects Res A Clin Mol Teratol 67, 496-503.
Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472.
Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745-2756.
Juan, S.H., Lee, J.L., Ho, P.Y., Lee, Y.H., and Lee, W.S. (2006). Antiproliferative and antiangiogenic effects of 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, in human umbilical vascular endothelial cells. Eur J Pharmacol 530, 1-8.
Kerzee, J.K., and Ramos, K.S. (2000). Activation of c-Ha-ras by benzo(a)pyrene in vascular smooth muscle cells involves redox stress and aryl hydrocarbon receptor. Mol Pharmacol 58, 152-158.
Kitamura, M., and Kasai, A. (2007). Cigarette smoke as a trigger for the dioxin receptor-mediated signaling pathway. Cancer Lett 252, 184-194.
Kleinman, H.K., Cannon, F.B., Laurie, G.W., Hassell, J.R., Aumailley, M., Terranova, V.P., Martin, G.R., and DuBois-Dalcq, M. (1985). Biological activities of laminin. J Cell Biochem 27, 317-325.
Korashy, H.M., and El-Kadi, A.O. (2006). The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab Rev 38, 411-450.
Kubota, Y., Kleinman, H.K., Martin, G.R., and Lawley, T.J. (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107, 1589-1598.
Kung, T., Murphy, K.A., and White, L.A. (2009). The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochem Pharmacol 77, 536-546.
Li, Z.D., Liu, L.Z., Shi, X., Fang, J., and Jiang, B.H. (2007). Benzo[a]pyrene-3,6-dione inhibited VEGF expression through inducing HIF-1alpha degradation. Biochem Biophys Res Commun 357, 517-523.
Lusska, A., Shen, E., and Whitlock, J.P., Jr. (1993). Protein-DNA interactions at a dioxin-responsive enhancer. Analysis of six bona fide DNA-binding sites for the liganded Ah receptor. J Biol Chem 268, 6575-6580.
Ma, Q. (2001). Induction of CYP1A1. The AhR/DRE paradigm: transcription, receptor regulation, and expanding biological roles. Curr Drug Metab 2, 149-164.
Ma, Q., and Baldwin, K.T. (2000). 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activaton and DNA binding of AhR. J Biol Chem 275, 8432-8438.
Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275.
McMillan, B.J., McMillan, S.N., Glover, E., and Bradfield, C.A. (2007). 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces premature activation of the KLF2 regulon during thymocyte development. J Biol Chem 282, 12590-12597.
Michaud, S.E., Menard, C., Guy, L.G., Gennaro, G., and Rivard, A. (2003). Inhibition of hypoxia-induced angiogenesis by cigarette smoke exposure: impairment of the HIF-1alpha/VEGF pathway. FASEB J 17, 1150-1152.
Mimura, J., Ema, M., Sogawa, K., and Fujii-Kuriyama, Y. (1999). Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev 13, 20-25.
Minet, E., Mottet, D., Michel, G., Roland, I., Raes, M., Remacle, J., and Michiels, C. (1999). Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460, 251-256.
Mitchell, K.A., and Elferink, C.J. (2009). Timing is everything: consequences of transient and sustained AhR activity. Biochem Pharmacol 77, 947-956.
Mizukami, Y., Kohgo, Y., and Chung, D.C. (2007). Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 13, 5670-5674.
Monteiro, P., Gilot, D., Le Ferrec, E., Lecureur, V., N'Diaye, M., Le Vee, M., Podechard, N., Pouponnot, C., and Fardel, O. (2007). AhR- and c-maf-dependent induction of beta7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun 358, 442-448.
Morgan, M.R., Humphries, M.J., and Bass, M.D. (2007). Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8, 957-969.
Morito, N., Yoh, K., Fujioka, Y., Nakano, T., Shimohata, H., Hashimoto, Y., Yamada, A., Maeda, A., Matsuno, F., Hata, H., et al. (2006). Overexpression of c-Maf contributes to T-cell lymphoma in both mice and human. Cancer Res 66, 812-819.
Mulero-Navarro, S., Pozo-Guisado, E., Perez-Mancera, P.A., Alvarez-Barrientos, A., Catalina-Fernandez, I., Hernandez-Nieto, E., Saenz-Santamaria, J., Martinez, N., Rojas, J.M., Sanchez-Garcia, I., et al. (2005). Immortalized mouse mammary fibroblasts lacking dioxin receptor have impaired tumorigenicity in a subcutaneous mouse xenograft model. J Biol Chem 280, 28731-28741.
Munoz-Chapuli, R., Quesada, A.R., and Angel Medina, M. (2004). Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 61, 2224-2243.
Murakami, M., Elfenbein, A., and Simons, M. (2008). Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res 78, 223-231.
Nicosia, R.F., and Ottinetti, A. (1990). Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26, 119-128.
Nie, M., Blankenship, A.L., and Giesy, J.P. (2001). Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. Environ Toxicol Pharmacol 10, 17-27.
Ohtake, F., Fujii-Kuriyama, Y., and Kato, S. (2009). AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol 77, 474-484.
Park, H. (1999). Aromatic hydrocarbon nuclear translocator as a common component for the hypoxia- and dioxin-induced gene expression. Mol Cells 9, 172-178.
Peter Guengerich, F., Chun, Y.J., Kim, D., Gillam, E.M., and Shimada, T. (2003). Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res 523-524, 173-182.
Pollenz, R.S. (2002). The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chem Biol Interact 141, 41-61.
Prell, R.A., and Kerkvliet, N.I. (1997). Involvement of altered B7 expression in dioxin immunotoxicity: B7 transfection restores the CTL but not the autoantibody response to the P815 mastocytoma. J Immunol 158, 2695-2703.
Puranik, R., and Celermajer, D.S. (2003). Smoking and endothelial function. Prog Cardiovasc Dis 45, 443-458.
Ramos, K.S. (1999). Redox regulation of c-Ha-ras and osteopontin signaling in vascular smooth muscle cells: implications in chemical atherogenesis. Annu Rev Pharmacol Toxicol 39, 243-265.
Rasheed, S., McDonald, P.J., Northover, J.M., and Guenther, T. (2008). Angiogenesis and hypoxic factors in colorectal cancer. Pathol Res Pract 204, 501-510.
Reisz-Porszasz, S., Probst, M.R., Fukunaga, B.N., and Hankinson, O. (1994). Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol 14, 6075-6086.
Riecke, K., Schmidt, A., and Stahlmann, R. (2003). Effects of 2,3,7,8-TCDD and PCB 126 on human thymic epithelial cells in vitro. Arch Toxicol 77, 358-364.
Roberts, B.J., and Whitelaw, M.L. (1999). Degradation of the basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. J Biol Chem 274, 36351-36356.
Safran, M., and Kaelin, W.G., Jr. (2003). HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 111, 779-783.
Sane, D.C., Anton, L., and Brosnihan, K.B. (2004). Angiogenic growth factors and hypertension. Angiogenesis 7, 193-201.
Santiago-Josefat, B., and Fernandez-Salguero, P.M. (2003). Proteasome inhibition induces nuclear translocation of the dioxin receptor through an Sp1 and protein kinase C-dependent pathway. J Mol Biol 333, 249-260.
Santiago-Josefat, B., Pozo-Guisado, E., Mulero-Navarro, S., and Fernandez-Salguero, P.M. (2001). Proteasome inhibition induces nuclear translocation and transcriptional activation of the dioxin receptor in mouse embryo primary fibroblasts in the absence of xenobiotics. Mol Cell Biol 21, 1700-1709.
Savouret, J.F., Berdeaux, A., and Casper, R.F. (2003). The aryl hydrocarbon receptor and its xenobiotic ligands: a fundamental trigger for cardiovascular diseases. Nutr Metab Cardiovasc Dis 13, 104-113.
Schmidt, J.V., and Bradfield, C.A. (1996). Ah receptor signaling pathways. Annu Rev Cell Dev Biol 12, 55-89.
Seifert, A., Katschinski, D.M., Tonack, S., Fischer, B., and Navarrete Santos, A. (2008). Significance of prolyl hydroxylase 2 in the interference of aryl hydrocarbon receptor and hypoxia-inducible factor-1 alpha signaling. Chem Res Toxicol 21, 341-348.
Shields, P.G., Bowman, E.D., Harrington, A.M., Doan, V.T., and Weston, A. (1993). Polycyclic aromatic hydrocarbon-DNA adducts in human lung and cancer susceptibility genes. Cancer Res 53, 3486-3492.
Su, Y., Cao, W., Han, Z., and Block, E.R. (2004). Cigarette smoke extract inhibits angiogenesis of pulmonary artery endothelial cells: the role of calpain. Am J Physiol Lung Cell Mol Physiol 287, L794-800.
Swanson, H.I., and Perdew, G.H. (1993). Half-life of aryl hydrocarbon receptor in Hepa 1 cells: evidence for ligand-dependent alterations in cytosolic receptor levels. Arch Biochem Biophys 302, 167-174.
Takata, K., Morishige, K., Takahashi, T., Hashimoto, K., Tsutsumi, S., Yin, L., Ohta, T., Kawagoe, J., Takahashi, K., and Kurachi, H. (2008). Fasudil-induced hypoxia-inducible factor-1alpha degradation disrupts a hypoxia-driven vascular endothelial growth factor autocrine mechanism in endothelial cells. Mol Cancer Ther 7, 1551-1561.
Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N., and Johnson, R.S. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6, 485-495.
Thirman, M.J., Albrecht, J.H., Krueger, M.A., Erickson, R.R., Cherwitz, D.L., Park, S.S., Gelboin, H.V., and Holtzman, J.L. (1994). Induction of cytochrome CYPIA1 and formation of toxic metabolites of benzo[a]pyrene by rat aorta: a possible role in atherogenesis. Proc Natl Acad Sci U S A 91, 5397-5401.
Thomas, R.S., Rank, D.R., Penn, S.G., Craven, M.W., Drinkwater, N.R., and Bradfield, C.A. (2002). Developing toxicologically predictive gene sets using cDNA microarrays and Bayesian classification. Methods Enzymol 357, 198-205.
Tomanek, R.J., Lund, D.D., and Yue, X. (2003). Hypoxic induction of myocardial vascularization during development. Adv Exp Med Biol 543, 139-149.
van Hinsbergh, V.W., Collen, A., and Koolwijk, P. (2001). Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 936, 426-437.
van Nieuw Amerongen, G.P., Koolwijk, P., Versteilen, A., and van Hinsbergh, V.W. (2003). Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 23, 211-217.
Whitlock, J.P., Jr. (1999). Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 39, 103-125.
Yamakawa, M., Liu, L.X., Date, T., Belanger, A.J., Vincent, K.A., Akita, G.Y., Kuriyama, T., Cheng, S.H., Gregory, R.J., and Jiang, C. (2003). Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93, 664-673.
Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., and Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242-248.
Zhang, Y., and Ramos, K.S. (2008). The development of abdominal aortic aneurysms in mice is enhanced by benzo(a)pyrene. Vasc Health Risk Manag 4, 1095-1102.
Zhang, Y.J., Weksler, B.B., Wang, L., Schwartz, J., and Santella, R.M. (1998). Immunohistochemical detection of polycyclic aromatic hydrocarbon-DNA damage in human blood vessels of smokers and non-smokers. Atherosclerosis 140, 325-331.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43710-
dc.description.abstract苯芘屬於多環芳香烴的一員,而多環芳香烴是一種人體經常接觸到的環境污染物,主要是由有機物質的不完全燃燒所產生,其暴露來源主要有交通運輸廢氣、工廠廢氣、香菸及碳烤食物等。過去文獻指出多環芳香烴與缺血性心血管疾病發生有相關性。而血管新生作用在缺血性心血管疾病中扮演著相當重要的角色,因為血管新生作用可避免組織因過度缺血氧而壞死。而且多環芳香烴受體也已被證實會參與在血管新生的調控。此外,過去研究文獻指出苯芘的代謝活化是透過多環芳香烴受體而去啟動下游代謝酵素CYP1A1、CYP1B1的基因轉錄活化,將其代謝成為benzo[a]pyrene-7,8- dihydrodiol-9,10-epoxide (BPDE)。因此,本篇的研究目的欲探討在苯芘前處理的人類臍靜脈內皮細胞是否透過AhR去影響缺氧狀態下的血管新生作用。
本實驗將人類臍靜脈內皮細胞以不同濃度的苯芘處理觀察細胞經由苯芘處理後,對於缺氧狀態下(0.5% O2)所誘導的管狀構造形成作用是否有影響,並且以缺氧狀態培養的方式,來觀察前處理苯芘的人類臍靜脈內皮細胞對於缺氧狀態所造成的缺氧誘導因子-1 alpha累積現象的影響並藉由HRE promoter reporter assay觀察苯芘所抑制的缺氧誘導因子-1 alpha累積是否會影響其轉錄活化的能力。接著,以缺氧狀態培養的方式,來觀察苯芘前處理人類臍靜脈內皮細胞對於缺氧狀態所促進HIF-1 alpha下游基因VEGF的表現量的影響。此外,以不同濃度及不同時間點的苯芘處理,藉由西方墨點法觀察苯芘的處理是否會造成人類臍靜脈內皮細胞的AhR活化及誘導其下游CYP1A1、CYP1B1蛋白質表現,同時也進一步去觀察AhR的蛋白質表現。接著,再以AhR拮抗劑alpha-naphthoflavone (alpha-NF)前處理人類臍靜脈內皮細胞的方式來進行實驗,觀察抑制AhR活化對於苯芘所減少缺氧狀態下的管狀構造形成及HRE 活性是否有所影響。此外,也利用AhR shRNA將人類臍靜脈內皮細胞進行基因靜默的方式來進行實驗,觀察AhR靜默後對於苯芘所減少缺氧狀態下的管狀構造形成是否有影響。最後,本實驗利用XRE及HRE promoter reporter assay觀察人類臍靜脈內皮細胞前處理苯芘後,再置於缺氧狀態下,XRE及HRE兩者活性的消長關係並且利用免疫沉澱法觀察苯芘處理是否會影響HIF-1 alpha與ARNT (HIF-1 alpha)之間的鍵結程度。
本研究結果顯示,苯芘能抑制缺氧狀態所誘導的人類臍靜脈內皮細胞管狀構造形成作用,並且抑制缺氧狀態所造成的缺氧誘導因子-1 alpha累積之現象,同時也抑制缺氧狀態所活化的HRE活性,進而抑制缺氧誘導因子-1 alpha下游基因VEGF mRNA表現。而且,苯芘能誘導人類臍靜脈內皮細胞的AhR活化及誘導其下游CYP1A1、CYP1B1蛋白質表現,同時也造成AhR的蛋白質表現減少。此外,利用AhR的拮抗劑alpha-NF及AhR shRNA可以回復苯芘所減少缺氧狀態下所誘導的管狀構造形成。因此,證明了AhR的確參與在苯芘所減少缺氧狀態下所誘導的管狀構造形成當中。然而,在HRE/XRE冷光酶活性分析法及免疫沉澱法等實驗結果得知苯芘所抑制的缺氧狀態活化之HRE活性不是經由AhR與HIF-1 alpha競爭ARNT (HIF-1 beta)。
zh_TW
dc.description.abstractBenzo[a]pyrene (B[a]P) belongs to one of polycyclic aromatic hydrocarbons (PAHs), which is produced during incomplete combustion of organic materials and found in diesel exhaust, charcoal-broiled food, industrial waste, and cigarette smoke. Several toxicological and epidemiological studies indicate that exposure to PAHs is a risk factor for ischemic heart disease. In physiology, angiogenesis is thought as a protective defense mechanism against tissue ischemia. Some researches show that aryl hydrocarbon receptor (AhR) is involved in regulation of angiogenesis. B[a]P binds to AhR and subsequent translocates to the nucleus to activate the downstream gene expression, such as CYP1A1 and CYP1B1, to metabolite B[a]P to benzo[a]pyrene-7,8- dihydrodiol-9,10-epoxide (BPDE). We have investigated whether AhR involved in the effects of B[a]P on hypoxia-induced angiogenesis.
First, we pretreated HUVECs with different concentration of B[a]P (0.3, 1, 3, 10 uM) and then under hypoxia condition (0.5% O2) to observe the tube formation assay, HIF-1 alpha protein accumulation, HRE promoter reporter assay and the downstream VEGF mRNA expression. Second, we treated human umbilical vein endothelial cells (HUVECs) with different concentration of B[a]P (0.3, 1, 3, 10 uM) in different time points (3, 6, 12, 24, 48 hours) to observe the AhR, CYP1A1 and CYP1B1protein expression. In order to investigate whether AhR involved in the effects of B[a]P on hypoxia-induced angiogenesis, We used the AhR antagonist, alpha-naphthoflavone (alpha-NF), to observe the effects of B[a]P on the hypoxia-induced tube formation and HRE activity. Besides, we also used AhR shRNA to observe the effects of B[a]P on the hypoxia-induced tube formation. In addition, we used XRE/ HRE promoter reporter assay and immunoprecipitation assay to observe AhR, HIF-1 alpha and ARNT (HIF-1 alpha) interation.
In these results, we found that B[a]P 10 uM inhibited the hypoxia-induced tube formation in HUVECs. In the western blotting, B[a]P 10 uM decreased the HIF-1 alpha protein accumulation in HUVECs under hypoxia. B[a]P 10 uM decreased HRE activity and down-regulated VEGF mRNA expression in HUVECs. These results show that B[a]P impaired HIF-1 alpha protein accumulation to decrease HRE activity and VEGF mRNA expression, and then these effects cause the hypoxia-induced tube formation inhibited by B[a]P. As we known B[a]P induces CYP1A1, CYP1B1 through binding to and activating AhR. We also observe that B[a]P through activating AhR to induce CYP1A1 and CYP1B1 protein expression and down-regulate AhR protein expression in the time- and dose-dependent response in HUVECs. In the results, alpha-NF can reverse the inhibition of B[a]P on the hypoxia-induced tube formation and HRE activity. Besides, AhR shRNA also can reverse the inhibition of B[a]P on the hypoxia-induced tube formation. Therefore, these results suggest that AhR is involved in B[a]P-inhibited hypoxia-induced tube formation. In addition, the XRE/ HRE promoter reporter assay and immunoprecipitation assay showed that the inhibition of B[a]P on the hypoxia-induced HRE activity is not due to ARNT (HIF-1 beta) competion.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:26:34Z (GMT). No. of bitstreams: 1
ntu-98-R96447002-1.pdf: 2088485 bytes, checksum: 947ae61bbe24ad4d19698a5e86c17138 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書
謝誌
縮寫表(Abbreviations) .i
圖表目錄(Figures and Tables) .ii
中文摘要.iv
英文摘要.vi
第一章
緒論(Introduction)
1.1 苯芘(benzo[a]pyrene, B[a]P)之背景及毒理介紹.1
1.2 苯芘與心血管疾病(Cardiovascular diseases, CVDs)的相關性.1
1.3 血管內皮細胞(Endothelial cells)與血管新生(angiogenesis)2
1.4 缺氧狀態下所誘導的血管新生作用(hypoxia-induced angiogenesis)與缺氧誘導因子-1α (hypoxia-inducible factor-1 alpha, HIF-1α)的調控3
1.5 多環芳香烴受體(aryl hydrocarbon receptor, AhR)的表現與調控4
1.6 多環芳香烴受體(aryl hydrocarbon receptor, AhR)與血管新生的調控6
1.7 研究動機.6
第二章
實驗材料與方法(Materials and Methods)
2.1 實驗材料.8
2.1.1 實驗藥品.8
2.1.2 抗體、酵素與試劑.9
2.2 實驗方法.9
2.2.1人類臍靜脈內皮細胞(Human Umbilical Vein Endothelial Cells, HUVECs)的分離與培養.9
2.2.2 管狀形成實驗(Tube formation assay) .10
2.2.3 細胞毒性測試(Cell viability test/ MTT assay) .10
2.2.4 西方墨點法(Western blot analysis) .11
2.2.5 細胞RNA萃取(RNA extraction) .12
2.2.6 反轉錄聚合酶鏈鎖反應(Reverse Transcription Polymerase Chain Reaction, RT-PCR) .12
2.2.7 免疫沉澱法(Immunoprecipitation) .13
2.2.8 電穿孔法(Electroporation) .14
2.2.9 HRE冷光酶分析法(HRE luciferase assay) .14
2.2.10 AhR shRNA及AhR shRNA transfection.14
2.2.11 XRE construct及XRE冷光酶分析法(XRE luciferase assay) .15
2.2.12 統計分析(Statistic analysis) .15
第三章
實驗結果(Results)
3.1 苯芘對人類臍靜脈內皮細胞無細胞毒性(cytotoxicity) .16
3.2 苯芘能抑制缺氧狀態所誘導的人類臍靜脈內皮細胞管狀構造形成作用.16
3.3苯芘能抑制缺氧狀態所造成的缺氧誘導因子-1α (HIF-1α)累積之現象.18
3.4苯芘能抑制缺氧狀態所活化的HRE活性.18
3.5 苯芘能抑制缺氧誘導因子-1α下游基因VEGF mRNA表現.19
3.6 苯芘(B[a]P)能促進人類臍靜脈內皮細胞的CYP1A1及CYP1B1表現且減少多環芳香烴受體(AhR)的表現.20
3.7 α-NF 可以回復苯芘抑制的缺氧狀態所誘導之管狀構造形成作用.22
3.8 AhR shRNA可以回復苯芘所抑制的缺氧狀態所誘導之管狀構造形成.22
3.9 α-NF 可以回復苯芘所抑制的缺氧狀態活化之HRE活性.23
3.10 苯芘會誘導XRE活性上升,但苯芘所抑制的缺氧狀態活化之HRE活性不是經由AhR與HIF-1α競爭ARNT (HIF-1β).24
3.11 苯芘所抑制的缺氧狀態活化之HRE活性不是經由AhR與HIF-1α競爭ARNT (HIF-1β).25
3.12 α-NF及AhR shRNA 無法回復苯芘所抑制的缺氧狀態所造成的缺氧誘導因子-1α累積之現象.26
第四
章 討論(Discussion)
4.1 苯芘能促進人類臍靜脈內皮細胞的CYP1A1及CYP1B1表現且減少多環芳香烴受體(AhR)的表現的機制.28
4.2 苯芘抑制缺氧狀態所誘導的人類臍靜脈內皮細胞管狀構造形成作用的機制.29
4.3 AhR在苯芘抑制的缺氧狀態所誘導之管狀構造形成作用中所扮演的角色.31
4.4 苯芘能抑制缺氧狀態所誘導的人類臍靜脈內皮細胞管狀構造形成作用的機制:HIF-1α與AhR之相關性的探討.32
4.5 α-NF及AhR shRNA 無法回復苯芘所抑制的缺氧狀態所造成的缺氧誘導因子-1α (HIF-1α)累積之現象.33
4.6 苯芘能抑制缺氧狀態所誘導的人類臍靜脈內皮細胞管狀構造形成作用的機制是否透過AhR-independent pathway的方式.34
第五章
結論(Conclusion) .36
參考文獻(References) .37
圖表集(Figures and Tables) .48
dc.language.isozh-TW
dc.subject缺氧誘導因子-1αzh_TW
dc.subject苯芘zh_TW
dc.subject人類臍靜脈內皮細胞zh_TW
dc.subject血管新生zh_TW
dc.subject多環芳香烴受體zh_TW
dc.subjectaryl hydrocarbon receptor (AhR)en
dc.subjectBenzo[a]pyrene (B[a]P)en
dc.subjecthypoxia-inducible factor-1 alpha (HIF-1 alpha)en
dc.subjecthuman umbilical vein endothelial cells (HUVECs)en
dc.subjectangiogenesisen
dc.title苯芘對於缺氧狀態下所誘導的血管新生的影響:多環芳香烴受體角色之探討zh_TW
dc.titleEffects of Benzo[a]pyrene on Hypoxia-induced Angiogenesis:
The Role of Aryl Hydrocarbon Receptor
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭福佐,鄭景暉
dc.subject.keyword苯芘,人類臍靜脈內皮細胞,血管新生,多環芳香烴受體,缺氧誘導因子-1α,zh_TW
dc.subject.keywordBenzo[a]pyrene (B[a]P),human umbilical vein endothelial cells (HUVECs),angiogenesis,aryl hydrocarbon receptor (AhR),hypoxia-inducible factor-1 alpha (HIF-1 alpha),en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2009-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved