請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43701完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林達德(Ta-Te Lin) | |
| dc.contributor.author | Shih-Chi Chou | en |
| dc.contributor.author | 周士棋 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:26:21Z | - |
| dc.date.available | 2012-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | 1. 王建勝、林達德。1992。對流式低溫顯微鏡冷凍臺與溫控系統之設計。農業機械學刊1(1):42-49。
2. 王振熙。1995。微膠囊與微膠囊包覆技術。微觀化學工程學刊42(2):28-40。 3. 王盈錦、莊亞欣。1995。微膠囊之製備與應用。生物產業6(2):111-115。 4. 朱旭山。2005。工業材料雜誌。220期,93-103。新竹:財團法人工業技術研究院。 5. 江衍樹。2002。熱電致冷低溫顯微鏡之研製與應用。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。 6. 吳昌宏。2005。熱電致冷低溫顯微鏡改良與其應用於斑馬魚胚體冷凍實驗。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。 7. 吳明哲、駱亞欣、劉振發。1997。不同胚期與品種的豬胚經慢速冷凍後之存活率比較。畜產研究30(1):97-109。 8. 吳岱霖。2007。熱電致冷低溫顯微鏡系統模組化設計與微膠囊冷凍實驗。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。 9. 邱欣怡。2004。藉最適化方法探討添加益菌質於囊壁對微膠囊化原生菌之影響。碩士論文。臺北:國立臺灣大學畜產學研究所。 10. 林達德。1991。微電腦低溫顯微鏡系統之研製與應用。國立臺灣大學農學院研究報告31(2):88-104。 11. 林達德。1992。生物細胞內凍結現象之機率模式與分析。農業機械學刊1(4):11-21。 12. 致惠科技股份有限公司。2009。顯微鏡溫控平臺。新竹:致惠科技股份有限公司。網址:http://www.wiselife.com.tw/。上網日期:2009-3-09。 13. 莊幸蓉。2005。熱電致冷器與熱電能源產生器之設計與分析。碩士論文。新竹:國立清華大學微機電系統工程研究所。 14. 郭丁嘉。2003。迷你環控箱之研發。碩士論文。臺北:國立臺灣大學機械工程學研究所。 15. 巢育誠,陳忠益,黃國雄,張志鵬。2007。W/O/W型海藻酸鈣膠囊之製備及其制放性的探討。華岡紡織期刊14(2)111-117。 16. 張淑真,張文忠,王盈錦。1998。工業材料雜誌。136期。85-95。新竹:財團法人工業技術研究院。 17. 張鴻奇。2001。微膠囊技術之發展及應用回顧。化工資訊15(8):28-35。 18. 陳明汝、林慶文、邱欣怡。2003。不同微膠囊材質在包覆原生菌上之應用。科學農業51(5、6)110-117。 19. 陳長豪,張志鵬。2003。利用液中硬化包覆法製備海藻酸鈣微膠囊及其制放性之研究。華岡紡織期刊10(3)355-361。 20. 蔡惠萍,趙乃賢。1994。冷凍保存九孔精液的技術與意義。臺灣水產學會刊21(4)347-360。 21. 劉袖洞,于煒婷,王為,雄鷹,馬小軍,袁權。2008。海藻酸鈉和殼聚糖聚電解質微膠囊及其生物醫學應用。化學進展20(1)126-139。 22. 龍侃、林達德。1994。方向式低溫顯微鏡系統之研製與應用。農業機械學刊2(4):15-24。 23. Aly, A. A.. 2006. Fuzzy temperature control of a thermoelectric cooler. IEEE International Conference Industrial Technology, ICIT 2006. 1580-1585. 24. Chang, T. M. S.. 1964. Semipermeable microcapsules. Science. 146: 524-525. 25. Deasy, P. B.. 1984. General Introduction. pp. 1-19. Deasy P. B. (Ed), In “Microencapsulation and Related Drug Processes”. Marcel Dekker, Inc., New York. 26. Diller, K. R., and E. G. Cravalho. 1971. A cryomicroscope for the study of freezing and thawing processes in biological cells. Cryobiology. 7: 191-199. 27. Diller, K. R., E. G. Cravalho, and C. E. Huggins. 1972. Intracellular freezing in biomaterials. Cryobiology. 9: 429-440. 28. Fahy, G. M., D. R. MacFarlenc, C. A. Angell, and H. T. Meryman. 1984. Vitrification as an approach to cryopreservation. Cryobiology. 21: 407-426. 29. Heng, B. C., Y. J. H. Yu, and S. C. Ng. 2004. Slow-cooling protocols for microcapsule cryopreservation. Journal of Mircroencapsulation. 21(4): 455-467. 30. Hester-Reilly, H.J., and N.C. Shapley. 2007. Imaging contrast effects in alginate microbeads containing trapped emulsion droplets. Journal of Magnetic Resonance. 188: 168-175. 31. Ikeda, M., T. Nakamura, Y. Kimura, H. Noda, I. Sauciuc, and H. Erturk. 2006. Thermal performance of thermoelectric cooler (TEC) integrated heat sink and optimizing structure for low acoustic noise / power consumption. Semiconductor Thermal Measurement and Management Symposium, 2006 IEEE Twenty-Second Annual IEEE. 144-151. 32. Klokk, T. I., and J. E. Melvik. 2002. Controlling the size of alginate gel beads by use of a high electrostatic potential. Journal of Mircroencapsulation. 19(4): 415-424. 33. Leibo, S. P., J. J. McGrath, and E. G. Cravalho. 1978. Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology. 15: 257-271. 34. Liu, X. D., W. Y. Yu, Y. Zhang, W. M. Xue, W. T. Yu, Y. Xiong, X. J. Ma, Y. Chen, and Q. Yuan. 2002. Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources. Journal of Mircroencapsulation. 19(6): 775-782. 35. McGann, L. E. 1979. Optimal temperature ranges for control of cooling rate. Cryobiology 16: 211-216. 36. Mazur, P.. 1970. Cryobiology: The freezing of biological systems. Science. 168: 939-949. 37. Mazur, P.. 1977. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 14: 251-272. 38. Mazur, P., I. L. Pinn, S. Seki, F. W. Kleinhans, and K. Edashige. 2005. Effects of hold time after extracellular ice formation on intracellular freezing of mouse oocytes. Cryobiology. 51: 235-239. 39. Mazur, P., I. L. Pinn, and F.W. Kleinhans. 2007. Intracellular ice formation in mouse oocytes subjected to interrupted rapid cooling. Cryobiology. 55: 158-166. 40. McGrath, J. J., E. G.. Cravalho, and C. E. Huggins. 1975. An experimental comparison of intracellular ice formation and freeze-thaw survival of Hela S-3 cells. Cryobiology 12: 540-550. 41. McGrath, J. J.. 1987. Temperature-controlled cryogenic light microscopy. In: Grout B. W. W., and G. J. Morris eds. The Effects of Low Temperature on the Biological System, 234-268. London: Edward Arnold Press. 42. Meryman, H. T.. 1971. Cryoprotective agents. Cryobiology. 8: 173-183. 43. Murua A., G. Orive, R. M. Hernandez, and J. L. Pedraz. 2009. Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials. 30(20): 3495-3501. 44. Namperumal, R., and R. Coger. 1998. A new cryostage design for cryomicroscopy. Journal of Mircroscopy. 192: 202-211. 45. Pitt, R. E., and V. P. L. Steponkus. 1989. Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts. Cryobiology. 26: 44-63. 46. Pitt, R. E., M. Chandrasekaran, and J. E. Parks. 1992. Performance of a kinetic model for intracellular ice formation based on the extent of supercooling. Cryobiology. 29: 359-373. 47. Rubinsky, B., and M. Ikeda. 1985. A cryomicroscope using directional solidification for the controlled freezing of biological material. Cryobiology. 22: 55-68. 48. Schwartz, G. J., and K. R. Diller. 1982. Design and fabrication of a simple, versatile cryomicroscopy stage. Cryobiology. 19: 529-538. 49. Schwartz, G. J., and K. R. Diller. 1983. Osmotic response of individual cells during freezing: I. Experimental volume measurements. Cryobiology. 20: 61-77. 50. Sheu, T. Y., R. T. Marshall, and H. Heymann. 1993. Improving survival of culture bacteria in frozen desserts by microentrapment. Journal of Dairy Science. 76: 1902-1907. 51. Sugiura S., T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, and M. Nakajima. 2005. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials. 26(16): 3327-3331. 52. Zhang J., X. Li, D. Zhang, and Z. Xiu. 2007. Theoretical and experimental investigations on the size of alginate microspheres prepared by dropping and spraying. Journal of Mircroencapsulation. 24(4): 303-322. 53. Ziegler, J. G., and N. B. Nichols. 1942. Optimum settings for automatic controllers. Trans. ASMS. 64: 759-768. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43701 | - |
| dc.description.abstract | 低溫顯微鏡為觀察細胞於低溫環境的重要工具,藉由觀察結果可協助設計適用於特定細胞之冷凍保存方法。本研究所研製的冷凍臺是以熱電致冷晶片(Thermoelectric Cooler, TEC)為主體架構,藉由回饋控制方式以及設計的溫控方法,控制流經熱電致冷晶片的電流大小與方向,進而控制冷凍臺溫度。系統性能測試結果顯示,冷凍臺可控制之最低溫度為−50°C,降溫速率可達−80°C/min,且恆溫控制平均絕對誤差在0.1°C之內。所完成的低溫顯微鏡系統以微膠囊做為實驗觀察對象。在低溫環境下,當微膠囊外部水溶液的冰晶接觸到囊壁後,冰晶隨即觸發微膠囊產生細胞內凍結(Intracellular Ice Formation, IIF)的現象。本研究實驗設計是以微膠囊體積大小(0.1 ~ 0.4 mm)、降溫速率(−1 ~ −20°C/min)、囊內冷凍保護劑(二甲基亞颯(Dimethyl Sulphoxide, DMSO))濃度(1 ~ 3M)、囊外冰晶觸發影響等變因,進行各項冷凍實驗。在降溫速率與囊內DMSO濃度實驗中,得到在越慢的降溫速率與越高濃度的DMSO條件下,微膠囊能藉由脫水機制,降低發生細胞內凍結的機率。實驗結果顯示,置於1、2、3M DMSO溶液內的微膠囊,以−1°C/min降溫速率,由室溫至−50°C的過程中,發生細胞內凍結的機率依序是100%、4.8%、4.8%。另外,若以矽油取代微膠囊外部溶液,去除外部冰晶觸發和滲透壓影響,可更降低微膠囊內凍結的溫度,且體積越小的微膠囊,發生細胞內凍結現象的溫度越低。但在此項實驗中卻因排除脫水的機制,而最終導致所有的微膠囊發生細胞內凍結現象。當囊內為2M DMSO,體積0.1~0.2 mm、0.2~0.3 mm、0.3~0.4 mm大小的微膠囊,發生細胞內凍結的中間值溫度分別是−38.7°C、−30.4°C、−29.2°C。 | zh_TW |
| dc.description.abstract | The cryomicroscope system is an important instrument for the observation of freezing behaviors of cells in low temperature environment. In this study, a cryomicroscope system was developed for transmission light microscopy based on TEC (Thermoelectric Cooler). The temperature of the cold stage is controlled by adjusting the magnitude and direction of the electric current supplied to the TEC using the feedback control algorithm developed in this research. For the TEC cryomicroscope system, the lowest temperature achievable is −50°C and the fastest cooling rate is −80°C/min. The absolute mean error of isothermal temperature control is less than 0.1°C. To test and verify the novel cryomicroscope system, we used microcapsules to simulate biological cells and observed their IIF (Intracellular Ice Formation) phenomenon. During freezing, IIF occurred immediately after the extracellular ice front in contact with the microcapsule membrane. Experiments were performed to investigate the factors affecting the IIF behavior. These factors include microcapsule volume size (0.1 to 0.4 mm), cooling rate (−1 to −20°C/min), intracellular DMSO (Dimethyl Sulphoxide) concentrations (1 to 3M), extracellular ice formation during freezing. For slower cooling rate and the higher DMSO concentration conditions, microcapsules can have lower probability of IIF due to dehydration. When microcapsules were suspended in 1, 2, 3M DMSO, cooled to −50°C at a cooling rate of −1°C/min, the probability of IIF were 100%, 4.8% and 4.8%, respectively. Additionally, when silicon oil was used as external solution to preclude external ice formation during freezing, the IIF temperatures of microcapsules were significantly lowered. The smaller volume of microcapsules resulted in lower IIF temperature. But IIF occurred for all of the microcapsules in the silicon oil because there was no dehydration during freezing process. When the intracellular solution of microcapsules was 2M DMSO, the median IIF temperatures of microcapsules, with 0.1~0.2 mm, 0.2~0.3 mm, 0.3~0.4 mm in diameter, were −38.7°C, −30.4°C and −29.2°C, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:26:21Z (GMT). No. of bitstreams: 1 ntu-98-R96631031-1.pdf: 7977787 bytes, checksum: e095f85ff41faf155b21f54385b4a716 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT ii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1前言 1 1.2研究目的 2 第二章 文獻探討 3 2.1低溫顯微鏡(Cryomicroscope) 3 2.1.1低溫顯微鏡簡介 3 2.1.2對流式(Convention)低溫顯微鏡 4 2.1.3傳導式(Conduction)低溫顯微鏡 5 2.1.4方向式(Directional)低溫顯微鏡 7 2.1.5熱電致冷式低溫顯微鏡 8 2.2熱電致冷晶片(Thermoelectric Cooler, TEC) 10 2.2.1熱電致冷晶片簡介 10 2.2.2熱電致冷晶片應用 14 2.3回饋控制理論 15 2.3.1 比例−積分−微分控制器簡介 15 2.3.2 比例−積分−微分控制器參數求法 17 2.4低溫保存(Cryopreservation) 19 2.4.1低溫保存簡介 19 2.4.2影響低溫保存之因子 21 2.4.3細胞內凍結 22 2.5微膠囊(Microcapsules) 23 2.5.1微膠囊簡介 23 2.5.2微膠囊包覆技術 24 2.5.3微膠囊在生物技術上的應用 26 第三章 研究設備與方法 28 3.1實驗設備 28 3.1.1冷凍臺系統 28 3.1.2散熱系統 31 3.1.3控制電路 32 3.1.4影像擷取系統 33 3.1.5溫控軟體 33 3.1.6系統架構 34 3.2研究方法 35 3.2.1溫度校正 35 3.2.2 比例−積分−微分控制器參數調整 37 3.2.3控制策略 41 3.3樣本準備 43 3.3.1實驗材料 43 3.3.2微膠囊製作方法 44 3.3.3掃描式電子顯微鏡樣本之製備與觀察 47 3.4實驗設計與規劃 48 3.4.1系統測試 48 3.4.2微膠囊細胞內凍結實驗 48 3.4.3微膠囊於觀測平臺上不同位置與細胞內凍結實驗 49 3.4.4體積大小與細胞內凍結實驗 49 3.4.5抗凍劑與微膠囊細胞內凍結實驗 49 3.4.6外部冰晶觸發微膠囊發生細胞內凍結實驗 50 3.4.7冷凍速率與微膠囊細胞內凍結實驗 51 第四章 結果與討論 52 4.1系統測試 52 4.1.1降溫速率 52 4.1.2恆溫控制 58 4.2微膠囊顯微構造圖 59 4.2.1微膠囊於光學顯微鏡呈像圖 59 4.2.2微膠囊於掃描式電子顯微鏡呈像圖 63 4.3微膠囊冷凍實驗 64 4.3.1微膠囊細胞內凍結實驗 64 4.3.2微膠囊於觀測平臺上不同位置之細胞內凍結實驗 64 4.3.3體積大小與細胞內凍結實驗 67 4.3.4抗凍劑與微膠囊細胞內凍結實驗 68 4.3.5外部冰晶觸發微膠囊發生細胞內凍結實驗 74 4.3.6冷凍速率與微膠囊細胞內凍結實驗 77 第五章 結論與建議 85 5.1結論 85 5.2建議 87 參考文獻 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 冷凍保護劑 | zh_TW |
| dc.subject | 微膠囊 | zh_TW |
| dc.subject | 細胞內凍結 | zh_TW |
| dc.subject | 低溫顯微鏡 | zh_TW |
| dc.subject | 熱電致冷晶片 | zh_TW |
| dc.subject | Cryoprotectant | en |
| dc.subject | Intracellular Ice Formation | en |
| dc.subject | Cryomicroscope | en |
| dc.subject | Thermoelectric Cooler | en |
| dc.subject | Microcapsule | en |
| dc.title | 光學顯微鏡熱電致冷低溫冷凍臺之研製並應用於微膠囊冷凍實驗 | zh_TW |
| dc.title | Development of a TEC Cryostage for Light Microscope and Its Application on Freezing Experiments of Microcapsules | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江昭皚(Chao-Ai Chiang),陳明汝(Ming-Ju Chen) | |
| dc.subject.keyword | 熱電致冷晶片,低溫顯微鏡,細胞內凍結,微膠囊,冷凍保護劑, | zh_TW |
| dc.subject.keyword | Thermoelectric Cooler,Cryomicroscope,Intracellular Ice Formation,Microcapsule,Cryoprotectant, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 7.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
