Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43693
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張靜文(Ching-Wen Chang)
dc.contributor.authorKai-Wen Mingen
dc.contributor.author明凱文zh_TW
dc.date.accessioned2021-06-15T02:26:09Z-
dc.date.available2014-09-16
dc.date.copyright2009-09-16
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citationAitken, D., Hay, J., Kinnear, F. B., Kirkness, C. M., Lee, W. R. and Seal, D. V. (1996). 'Amebic keratitis in a wearer of disposable contact lenses due to a mixed Vahlkampfia and Hartmannella infection.' Ophthalmology 103(3): 485-94.
Barbeau, J. and Buhler, T. (2001). 'Biofilms augment the number of free-living amoebae in dental unit waterlines.' Res Microbiol 152(8): 753-60.
Behets, J., Declerck, P., Delaedt, Y., Verelst, L. and Ollevier, F. (2007). 'Survey for the presence of specific free-living amoebae in cooling waters from Belgian power plants.' Parasitol Res 100(6): 1249-56.
Centeno, M., Rivera, F., Cerva, L., Tsutsumi, V., Gallegos, E., Calderon, A., Ortiz, R., Bonilla, P., Ramirez, E. and Suarez, G. (1996). 'Hartmannella vermiformis isolated from the cerebrospinal fluid of a young male patient with meningoencephalitis and bronchopneumonia.' Arch Med Res 27(4): 579-86.
Chen, N. T. (2009). 'Development of techniques on environmental monitoring for pathogenic Legionella.' unpublished data.
Declerck, P., Behets, J., van Hoef, V. and Ollevier, F. (2007). 'Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments.' Water Res 41(14): 3159-67.
Ettinger, M. R., Webb, S. R., Harris, S. A., McIninch, S. P., G, C. G. and Brown, B. L. (2003). 'Distribution of free-living amoebae in James River, Virginia, USA.' Parasitol Res 89(1): 6-15.
Fields, B. S., Nerad, T. A., Sawyer, T. K., King, C. H., Barbaree, J. M., Martin, W. T., Morrill, W. E. and Sanden, G. N. (1990). 'Characterization of an axenic strain of Hartmannella vermiformis obtained from an investigation of nosocomial legionellosis.' J Protozool 37(6): 581-3.
Grimm, D., Ludwig, W. F., Brandt, B. C., Michel, R., Schleifer, K. H., Hacker, J. and Steinert, M. (2001). 'Development of 18S rRNA-targeted oligonucleotide probes for specific detection of Hartmannella and Naegleria in Legionella-positive environmental samples.' Syst Appl Microbiol 24(1): 76-82.
Hsu, B.-M., Ma, P.-H., Liou, T.-S., Chen, J.-S. and Shih, F.-C. (2009). 'Identification of 18S ribosomal DNA genotype of Acanthamoeba from hot spring recreation areas in the central range, Taiwan.' Journal of Hydrology 367(3-4): 249-254.
Inoue, T., Asari, S., Tahara, K., Hayashi, K., Kiritoshi, A. and Shimomura, Y. (1998). 'Acanthamoeba keratitis with symbiosis of Hartmannella ameba.' Am J Ophthalmol 125(5): 721-3.
Khan, N. A. (2006). 'Acanthamoeba: biology and increasing importance in human health.' FEMS Microbiol Rev 30(4): 564-95.
Kilvington, S., Gray, T., Dart, J., Morlet, N., Beeching, J. R., Frazer, D. G. and Matheson, M. (2004). 'Acanthamoeba keratitis: the role of domestic tap water contamination in the United Kingdom.' Invest Ophthalmol Vis Sci 45(1): 165-9.
Kuiper, M. W., Valster, R. M., Wullings, B. A., Boonstra, H., Smidt, H. and van der Kooij, D. (2006). 'Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR.' Appl Environ Microbiol 72(9): 5750-6.
Michaelsen, A., Pinzari, F., Ripka, K., Lubitz, W. and Pinar, G. (2006). 'Application of molecular techniques for identification of fungal communities colonising paper material.' Int. Biodeterior. Biodegradation 58: 133-141.
Neff, R. J., Ray, S. A., Benton, W. F. and Wilborn, M. (1964). Methos in Cell Physiology. New York, Academic Press.
Page, F. C. (1988). A new key to freshwater and soil Gymnamoebae. . Ambleside, UK., Freshwater Biological Association.
Penas-Ares, M., Paniagua-Crespo, E., Madriñan-Choren, R., Marti-Mallen, M. and Arias-Fernandez, M. C. (1994). 'Isolation of free-living pathogenic amoebae from thermal spas in N.W. Spain.' Water, Air, & Soil Pollution 78(1): 83-90.
Priha, O., Hallamaa, K., Saarela, M. and Raaska, L. (2004). 'Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR.' J Ind Microbiol Biotechnol 31(4): 161-9.
Qvarnstrom, Y., Visvesvara, G. S., Sriram, R. and da Silva, A. J. (2006). 'Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri.' J Clin Microbiol 44(10): 3589-95.
Rivera, F., Ramirez, E., Bonilla, P., Calderon, A., Gallegos, E., Rodriguez, S., Ortiz, R., Zaldivar, B., Ramirez, P. and Duran, A. (1993). 'Pathogenic and free-living amoebae isolated from swimming pools and physiotherapy tubs in Mexico.' Environ Res 62(1): 43-52.
Riviere, D., Szczebara, F. M., Berjeaud, J. M., Frere, J. and Hechard, Y. (2006). 'Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts.' J Microbiol Methods 64(1): 78-83.
Rodriguez-Zaragoza, S. (1994). 'Ecology of free-living amoebae.' Crit Rev Microbiol 20(3): 225-41.
Rohr, U., Weber, S., Michel, R., Selenka, F. and Wilhelm, M. (1998). 'Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance.' Appl Environ Microbiol 64(5): 1822-4.
Storey, M. V., Langmark, J., Ashbolt, N. J. and Stenstrom, T. A. (2004). 'The fate of legionellae within distribution pipe biofilms: measurement of their persistence, inactivation and detachment.' Water Sci Technol 49(11-12): 269-75.
Thomas, V., Herrera-Rimann, K., Blanc, D. S. and Greub, G. (2006). 'Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network.' Appl Environ Microbiol 72(4): 2428-38.
Tsvetkova, N., Schild, M., Panaiotov, S., Kurdova-Mintcheva, R., Gottstein, B., Walochnik, J., Aspöck, H., Lucas, M. and Müller, N. (2004). 'The identification of free-living environmental isolates of amoebae from Bulgaria.' Parasitology Research 92(5): 405-413.
Wadowsky, R. M., Butler, L. J., Cook, M. K., Verma, S. M., Paul, M. A., Fields, B. S., Keleti, G., Sykora, J. L. and Yee, R. B. (1988). 'Growth-supporting activity for Legionella pneumophila in tap water cultures and implication of hartmannellid amoebae as growth factors.' Appl Environ Microbiol 54(11): 2677-82.
Wu, Y. C. (2008). Quantification of Acanthamoeba spp. and Hartmannella vermiformis by real-time polymerase chain reaction. Environmental Health College of Public Health. Taipei, National Taiwan University. Master thesis.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43693-
dc.description.abstractAcanthamoeba spp.及Hartmannella vermiformis為自營性阿米巴原蟲,常存在於自然及人工水體環境中。不僅本身具有致病性,且為其他致病菌繁殖增生的自然界宿主。本研究利用即時定量聚合酶鏈鎖反應 (Real-time quantitative polymerase chain reaction, Real-time qPCR) 建立此兩種原蟲數對應DNA量之檢量線,並在八間安養中心之冷卻水塔與熱水系統以及一間廢水處理廠中,進行此兩種原蟲環境調查,同時測量並記錄相關環4境因子,包括水質資料、系統維護與操作情況,以統計分析方法探究環境因子與此兩種原蟲的陽性檢出率及陽性樣本檢出濃度間之相關情形,藉以探討影響此兩種原蟲於不同環境中分布之顯著影響因子。
本研究發現,以real-time qPCR建立之檢量線可成功校正前處理對定量原蟲之影響,而PCR抑制現象則可透過適當稀釋DNA之方式獲得改善。據此,本研究環境測定的結果顯示,在冷卻水塔樣本中,Acanthamoeba spp.在水樣、水塔內空氣與水交界處之生物膜 (floating biofilm,FB) 及水塔內壁生物膜 (substrate biofilm,SB) 之陽性檢出率分別為70.4%、22.8% 及53.8%,而Acanthamoeba陽性樣本之平均濃度分別為965.3 cells/L、9 cells/cm2及1235.7 cells/g;H. vermiformis之陽性檢出率及陽性樣本平均濃度則分別為85.2%、66.7%、92.3%及1664 cells/L、49.3 cells/ cm2、14215 cells/g。而在熱水系統中,Acanthamoeba spp.之陽性檢出率及陽性樣本平均濃度在水樣,水龍頭生物膜 (faucet swab) 及蓮蓬頭生物膜 (showerhead swab)分別為60.3%、25%、40% 及 26.1 cells/L、3.51 cells/cm2、0.31 cells/cm2;H. vermiformis之陽性檢出率及陽性樣本平均濃度分別為69.1%、56.3%、60% 及 800.7 cells/L、39.8 cells/cm2、5.6 cells/cm2。結果顯示冷卻水塔及熱水系統中,H. vermiformis之陽性檢出率及陽性樣本平均濃度均高於Acanthamoeba spp.。相反地,Acanthamoeba spp.在在廢水處理廠進流水、二級生物沉澱池之出流水及加氯池之放流水的陽性檢出率 (88.9%、89.2%、83.8%) 及陽性樣本平均濃度 (2208.5 cells/L、5594.4 cells/L、3673.4 cells/L) 均高於H. vermiformis陽性檢出率 (77.8%、78.4%、78.4%) 及陽性樣本平均濃度 (1784.4 cells/L、576.8 cells/L、548.8 cells/L)。
以統計分析環境因子與Acanthamoebae spp.或H. vermiformis分布之相關性,綜合檢定結果發現,可培養之總細菌數在冷卻水塔水樣中對Acanthamoebae spp.之檢出濃度有顯著正面貢獻(P = 0.062),對於H. vermiformis在冷卻水塔水樣及熱水系統生物膜樣本也具有相同的趨勢(P = 0.003 and 0.001)。另外,總懸浮固體在熱水樣本當中,與Acanthamoeba spp. 之檢出濃度為正相關 (P = 0.09),但與H. vermiformis呈現相反趨勢(P<0.0001),顯示在相同的採樣環境中,兩種原蟲與環境因子之間的相關也有所差異。水溫經統計檢定後發現在冷卻水塔水樣及熱水系統生物膜樣本中對H. vermiformis 檢出濃度有顯著的負面影響 (P = 0.033 and 0.037)。退伍軍人菌之濃度則在熱水樣本及冷卻水塔FB樣本中發現分別和Acanthamoeba spp.及H. vermiformis之檢出濃度呈現負相關 (P = 0.032 and 0.095)。總體來看,相較於Acanthamoeba spp.而言,H. vermiformis對於環境因子的變化較敏感。
zh_TW
dc.description.abstractAcanthamoeba spp.and Hartmannella vermiformis were free-living amoebae and distributed widely in the natural and man-made aquatic environments. These amoebae are not only infective to human but also the hosts for other pathogenic bacteria to multiply in the environments. This study applied the real-time qPCR (Real-time quantitative polymerase chain reaction, Real-time qPCR) and constructed the cell-based standard curves to quantify these two types of amoebae in the cooling towers and hot water systems of eight nursing homes, as well as a multiple wastewater treatment plant. The environmental factors including the water characteristics, maintenances of the facilities and operation conditions were also measured or recorded to determine the factors significantly affecting the presence and the concentrations of these two targeted amoebae by the statistical analysis.
The results shown that the cell-based standard curves constructed by real-time qPCR could adjust the DNA loss which was caused during the sample pretreatments; and the PCR inhibition could be solved by the appropriate PCR dilution. According to this, our study indicated that the positive rates of Acanthamoeba spp. in the water, floating biofilm (FB) and substrate biofilm (SB) samples of cooling towers were 70.4%, 22.8% and 53.8%, respectively; and the cell concentrations of the Acanthamoeba-positive samples were 965.3 cells/L, 9 cells/cm2and 1235.7 cells/g, respectively. For H. vermiformis, the positive rates and concentrations of the positive samples were 85.2%, 66.7%, 92.3% and 1664 cells/L, 49.3 cells/ cm2, 14215 cells/g, respectively. In the hot water systems, the positive rates of Acanthamoeba spp. and the averaged concentrations of positive samples in the water, faucet swab and showerhead swab samples were 60.3%, 25%, 40% and 26.1 cells/L, 3.51 cells/cm2, 0.31 cells/cm2, respectively; For H. vermiformis, the positive rates and the concentrations of the positive samples were 69.1% and 800.7 cells/L in water samples, 56.3% and 39.8 cells/cm2 in the faucet swabs and 60% and 5.6 cells/cm2 in the showerhead swabs. The result revealed that the positive rates and cell concentrations of H. vermiformis wereboth higher than Acanthamoeba spp. in the cooling towers and the hot water systems. In contrast, the positive rates of Acanthamoeba spp. in the influent water, effluent water from secondary clarifier and chlorine contact tank (88.9%, 89.2% and 83.8%) and the averaged concentrations of the positive samples (2208.5 cells/L、5594.4 cells/L、3673.4 cells/L) were both higher than those of H. vermiformis (positive rates: 77.8%, 78.4% and 78.4%; mean concentrations: 1784.4 cells/L、576.8 cells/L、548.8 cells/L).
The results of statistical analysis indicated that the levels of total culturable bacteria were positively contributed to the concentrations of Acanthamoebae spp. in the cooling tower water samples(P = 0.062), and the trend also presented for H. vermiformis in the cooling tower water samples and the swab samples of the hot water systems(P = 0.003 and 0.001). In addition, total suspended solids were positively related to the concentrations of Acanthamoeba spp. in the hot waters (P = 0.09), while the contrary trend was observed for H. vermiformis (P<0.0001). Water temperature was adversely associated with the concentrations of H. vermiformis in cooling tower waters and swabs of hot water systems (P = 0.033 and 0.037). Moreover, concentrations of total Legionella and viable Legionnella significantly affected the concentrations of Acanthamoeba spp. and H. vermiformis in the hot waters and FB samples, respectively (P = 0.032 and 0.095). In general, H. vermiformis appeared to be more sensitive to the variance of environmental factors than Acanthamoeba spp. in the aquatic habitats.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:26:09Z (GMT). No. of bitstreams: 1
ntu-98-R96844013-1.pdf: 1605612 bytes, checksum: 06608b894718c6d0b4b62f85f9109fd1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1. Background 1
1.2. Literature Review 2
1.2.1. Distribution and health importance of Acanthamoeba spp. and Hartmannella vermiformis 2
1.2.2. Environmental factors affecting FLA 3
1.2.3. Detection and quantification methods for FLA 6
1.3. Rationales of this study 7
Chapter 2 Objectives of the Study 10
Chapter 3 Framework of the study 11
Chapter 4 Material and Methods 15
4.1. Microbial strains 15
4.1.1. Acanthamoeba castellanii 15
4.1.2. Hartmannella vermiformis 16
4.2. Culture medium and buffer solution 17
4.2.1. Preparation of ATCC medium 712 17
4.2.2. Preparation of ATCC medium 1034 18
4.2.3. Encystement medium 19
4.2.4. R2A agar 19
4.2.5. Preparation of Page’s Amoeba Saline (PAS) 20
4.2.6. Preparation of Phosphate buffered saline (PBS) 20
4.2.7. TE buffer solution 21
4.3. Construction of cell-based calibration curves and determination of detection limits and relative DNA recovery rates for A. castellanii and H. vermiformis 21
4.3.1. Preparation of trophozoites and cysts 21
4.3.2. Preparation of simulated samples 22
4.3.3. DNA extraction 25
4.3.4. Real-time qPCR 27
4.3.5. Cell-based calibration curves and detection limits 31
4.3.6. Relative recovery rates 32
4.4. Field sampling and amoebic analysis 33
4.4.1. Sampling strategy 33
4.4.2. Collection of environmental samples 34
4.4.3. Pretreatments of environmental samples 35
4.4.4. DNA extraction and DNA dilution 38
4.4.5. Real-time qPCR 39
4.4.6. Data analysis for environmental samples 40
4.5. Measurement of environmental factors 42
4.5.1. pH 42
4.5.2. Water temperature 43
4.5.3. Conductivity 43
4.5.4. Turbidity 43
4.5.5. Hardness 44
4.5.6. Free chlorine 44
4.5.7. Dissolved organic carbon 45
4.5.8. Total suspended solids 45
4.5.9. Total culturable bacteria 46
4.5.10. Legionella spp. 49
4.6. Statistical analysis 50
Chapter 5 Results 52
5.1. Cell-based standard curves, DNA recovery rates and detection limits for amoebic cells 52
5.1.1. Acanthamoeba spp. 52
5.1.2. H. vermiformis 61
5.2. Environmental investigation 70
5.2.1. Cooling towers 70
5.2.2. Hot water systems 101
5.2.3. Wastewater treatment plant 134
5.3. QA/QC of real-time qPCR 147
5.3.1. QA/QC of qPCR for Acanthamoeba spp. 147
5.3.2. QA/QC of qPCR for H. vermiformis 151
Chapter 6 Discussion 155
6.1. Comparison for DNA recovery rates, cell-based standard curves and detection limits of amoebae in different simulated sample types 155
6.1.1. Acanthamoeba spp. 155
6.1.2. H. vermiformis 156
6.1.3. Simulated SB samples 157
6.2. Environmental investigation of cooling towers 159
6.2.1. Dilution effect on amoebic detection and quantification in cooling towers 159
6.2.2. Association between environmental factors and amoebic cells in cooling towers 160
6.3. Environmental investigation of hot water systems 164
6.3.1. Dilution effect on amoebic detection and quantification of the hot water systems 164
6.3.2. Association between environmental factors and the distribution of amoebic cells in hot water systems 165
6.4. Environmental investigation of wastewater treatment plant 171
6.4.1. Dilution effect on amoebic detection and quantification in wastewater 171
6.4.2. Prevalence and quantification of amoebic cells in wastewater 171
Chapter 7 Conclusions and Suggestions 174
References 177
dc.language.isoen
dc.subject陽性檢出濃度zh_TW
dc.subject陽性檢出率zh_TW
dc.subject環境因子zh_TW
dc.subject廢水處理廠zh_TW
dc.subject熱水系統zh_TW
dc.subject冷卻水塔zh_TW
dc.subject鏈鎖反應zh_TW
dc.subject即時定量聚合&#37238zh_TW
dc.subjectAcanthamoeba castellaniizh_TW
dc.subjectHartmannella vermiformiszh_TW
dc.subjectAcanthamoeba castellaniien
dc.subjectHartmannella vermiformisen
dc.subjectreal-time qPCRen
dc.subjectcooling towersen
dc.subjecthot water systemsen
dc.subjectwastewater treatment planten
dc.subjectenvironmental factorsen
dc.subjectpositive rateen
dc.subjectconcentrations of positive samplesen
dc.title人工水體中Acanthamoeba spp.與Hartmannella vermiformis分布及環境因子之研究zh_TW
dc.titleAbundance of Acanthamoeba spp. and Hartmannella vermiformis in artificial waters and the association with environmental factorsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明(Jia-Ming Chang),陳保中(Pau-Chung Chen)
dc.subject.keywordAcanthamoeba castellanii,Hartmannella vermiformis,即時定量聚合&#37238,鏈鎖反應,冷卻水塔,熱水系統,廢水處理廠,環境因子,陽性檢出率,陽性檢出濃度,zh_TW
dc.subject.keywordAcanthamoeba castellanii,Hartmannella vermiformis,real-time qPCR,cooling towers,hot water systems,wastewater treatment plant,environmental factors,positive rate,concentrations of positive samples,en
dc.relation.page180
dc.rights.note有償授權
dc.date.accepted2009-08-18
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved