請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43621完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鼎偉(Ding-Wei Huang) | |
| dc.contributor.author | Chiao-Pang Huang | en |
| dc.contributor.author | 黃喬邦 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:24:32Z | - |
| dc.date.available | 2010-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-18 | |
| dc.identifier.citation | 1. Maier, S.A., Plasmonics, in Fundamentals and Applications. 2007, Springer.
2. IBRAHIM ABDULHALIM, M.Z., and AKHLESH LAKHTAKIA, Surface Plasmon Resonance for Biosensing: A Mini-Review. springer, 2008: p. 214-242. 3. I.C. Goyal, R.L.G., and A.K. Ghatak, Method of Analyzing Planar Optical Waveguides. Opt. Lett., 1991. 16: p. 30-32. 4. J., H., Present and future of surface plamson resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377: p. 528-539. 5. Matsubara K, K.S., Minami S., Optical chemical sensor based on surface plasmon measurment. APPLIED OPTICS, 1988. 27(6): p. 1160-1163. 6. Zhang L. M., U.D., Optical chemical sensing emploting surface plasmon resonance. Electronics Letters, 1988. 24(23). 7. Nylander C, L.B., Lind T, Gas detection by means of surface plasmons resonance. Sensors and Actuators 1982. 3. 8. Brockman J.M., N.B.P., Corn R.M., Surface plasmon resonance imaging measurments of ultrathin organic films. Annu. Rev. Phys. Chem., 2000. 51: p. 41-63. 9. Kruchinin A.A., V.Y.G., Surface plasmon resonance monitoring by means of polarization state measurment in reflected light as the basis of a DNA-probe biosensor. Sensors and Actuators B 1996. 30: p. 77-80. 10. B. Liedberg, I.L., E. Stenberg Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. and Actuators B 1993. 11: p. 63-72. 11. A.K. Sharma, R.J., B.D. Gupta, Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE SENSORS JOURNAL, 2007. 7. 12. Colin J. Alleyne, A.G.K., Ross C. McPhedran, Nicolae-Alexandru P. Nicorovici, and Daniel Maystre, Enhanced SPR sensitivity using periodic metallic structures. OPTICS EXPRESS, 2007. 15(13). 13. Kaiqun Lin, Y.L., Junxue Chen, Rongsheng Zheng, Pei Wang, and Hai Ming, Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. OPTICS EXPRESS, 2008. 16(23). 14. Kyung Min Byun, M.L.S., Sung June Kim, Soon Joon Yoon, and Donghyun Kim, Sensitivity Enhancement of Surface Plasmon Resonance Imaging Using Periodic Metallic Nanowires. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008. 26(11). 15. Amit Lahav, M.A., and I. Abdulhalim, Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. OPTICS LETTERS, 2008. 33(21). 16. Homola, J., Surface plasmon Resonance Sensors, J. Homola, Editor. 2006, Springer. 17. Macleod, H.A., Thin-Film Optical Filters. 1986. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43621 | - |
| dc.description.abstract | 本論文介紹許多金屬表面電漿共振現象的發展與研究,並針對利用金屬表面電漿共振性感測器作進一步的理論分析及最佳化設計。利用多層鍍膜理論解釋在介電材質和金屬間電磁場的實際分佈現象,同時也藉由在傳統的Krestchmann’s Geometry結構加上一層奈米等級的高折射率介電材質薄膜,分析在不同材料折射率與厚度參數組合之下每層材料的電磁場的分佈狀況,進而得到優於傳統Krestchmann’s Geometry結構的敏感度。我們使用RSoft、COMSOL等模擬軟體來模擬前人相關的研究,使用MathCAD來輔助理論推導過程,並將結果與本篇論文結構比較。最後試著透過不同材質薄膜間的厚度分配找出折射率變化對入射光角度達到最高敏感度的設計並歸納出透過稜鏡耦合的表面電漿感測器的設計原則。 | zh_TW |
| dc.description.abstract | In this thesis, we introduce the history of Surface plasmon resonance, and its development in recent years. Focusing on theoretical derivation and electromagnetic wave field analysis of the surface plasmon based sensor to obtain the principle for figuring out the effect of each parameters. Including thickness, refractive index, and corresponding incident angle of each layer. Furthermore, analysis about the TM polarized electromagnetic wave distribution between dielectric material and metal by using waveguide theory and couple mode theory. Based on above approaching to analyze the structure adding dielectric nano-layer with high refractive index on conventional Krestchmann’s geometry. We obtain much better sensitivity results than convention one and the principle might be applied in other application. Here the simulation software we use the software including RSoft, COMSOL and MathCAD to repeat the research done by former then compare with the design of this paper. Finally, we conclude the optimal design principle that most sensitive in change of refractive index respect to incident angle under different thickness layers and materials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:24:32Z (GMT). No. of bitstreams: 1 ntu-98-R96941059-1.pdf: 4233213 bytes, checksum: f706c624c25b271b98fbf3bdfab386fc (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 V Abstract VI List of Figures VII List of Tables X Chapter I. Introduction 1 1.1 Surface Plasmon[1] 1 1.2 Integrated Optics 2 1.3 Optical Sensors 3 1.4 Motivation 4 1.5 Outline 5 Chapter II. Background 7 2.1 Principles of Optical Waveguides 7 2.1.1 Basic Concept of Waveguide 7 2.1.2 Waveguide Theory 14 2.2 Surface Plasmon Resonance 20 2.2.1 Bulk Mode of Surface Plasmon 22 2.2.2 Thin Film Mode of Surface Plasmon 25 2.2.3 Surface Plasmon Based Sensors 28 2.3 Simulation Tools: RSoft and COMSOL 32 2.3.1 Rigorous Couple Wave Analysis (RCWA) Method 33 2.3.2 Finite Element Method (FEM) 36 Chapter III. Literature Review 39 3.1 Surface Plasmon Resonance Hydrogen Sensor Based on Metallic Grating with High Sensitivity 39 3.2 Sensitivity Enhancement of Surface Plasmon Resonance Imaging Using Periodic Metallic Nanowires 40 3.3 Sensitivity Enhancement of Guided-Wave Surface-Plasmon Resonance Sensors 42 Chapter IV. Derivation and Results 44 4.1 Derivation for Optimal Design in NGWSPR Configuration 45 4.2 Multi-Matrix Method in Thin Film Coating 51 Chapter V. Discussion 57 5.1 Materials in Each Layer of NGWSPR Sensor 57 5.2 Thickness of Each Layer and Coupling Dip Analysis 60 5.3 Incident Angle Analysis 63 5.4 Sensitivity Analysis 63 Chapter VI. Conclusion and Future Work 81 6.1 Conclusion 81 6.2 Future Work 83 References 84 | |
| dc.language.iso | en | |
| dc.subject | 金屬表面電漿 | zh_TW |
| dc.subject | 感測器 | zh_TW |
| dc.subject | 稜鏡耦合 | zh_TW |
| dc.subject | 多層鍍膜理論 | zh_TW |
| dc.subject | Waveguide Theory | en |
| dc.subject | Surface Plasmon Resonance | en |
| dc.subject | Optical Sensor | en |
| dc.title | 利用金屬表面電漿共振現象之感測器最佳化設計 | zh_TW |
| dc.title | Study of Optimal Design in Surface Plasmon Resonance Based Sensors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏培坤(Pei-Kuen Wei),林啟萬(Chii-Wann Lin) | |
| dc.subject.keyword | 金屬表面電漿,感測器,稜鏡耦合,多層鍍膜理論, | zh_TW |
| dc.subject.keyword | Surface Plasmon Resonance,Optical Sensor,Waveguide Theory, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
