請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43607完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鼎偉 | |
| dc.contributor.author | Shih-Pin Tsai | en |
| dc.contributor.author | 蔡詩平 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:24:16Z | - |
| dc.date.available | 2012-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-18 | |
| dc.identifier.citation | 1. Maxwell, J.C., Treatise on Electricity and Magnetism. 1891, Oxford University.
2. Haus, H.A., Waves And Fields In Optoelectronics. 1984, Prentice-Hall,Inc. 3. Popov, N.B.a.E., Total light absorption in a wide range of incidence by nanostructured metals without plasmons. Optical Society of America, 2008. 33(20): p. 2398-2400. 4. Rao, N.N., Elements of Engineering Electromagnetics. 1977, Pearson Education, Inc. 5. Xudong Fan, I.M.W., Siyka I. Shopova, Hongying Zhu, Jonathan D. Suter, Yuze Sun, Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 2008. 620: p. 8-26. 6. Gaylord, M.G.M.a.T.K., Rigorous coupled-wave analysis of planar-grating diffraction. Journal of the Optical Society of America A, 1981. 71: p. 811-818. 7. Gaylord, M.G.M.a.T.K., Diffraction analysis of dielectric surface-relief gratings. Journal of the Optical Society of America A, 1982. 72: p. 1385-1392. 8. Zienkiewicz, O.C., and Y. K. Cheung, The Finite Element Method in Engineering Science. 1971, McGraw-Hill. 9. Yamashita, E., Analisis Methods for Electromagnetic Wave Problems. 1990, Artech House. 10. Markus Hautakorpi, M.M., and Hanne Ludvigsen, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. OPTICS EXPRESS, 2008. 16(12): p. 8427-8432. 11. Okamoto, K., Fundamentals of Optical Waveguides. 2000, Academic Press. 12. 張克潛、李德杰, 微波與光電子學中的電磁理論. 2004, 五南圖書出版公司. 13. Hegedus, A.L.a.S., Handbook of Photovoltaic Science and Engineering. 2003, John Wiley & Sons Ltd. 14. Florent Monestier, J.-J.S., Philippe Torchio, Ludovic Escoubas,Bernard. Ratier, Wassim Hojeij, Bruno Lucas, André Moliton, Michel Cathelinaud, Christophe Defranoux, and François Flory1, Optical modeling of organic solar cells based on CuPc and C60. APPLIED OPTICS, 2008. 47(13): p. C251-C256. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43607 | - |
| dc.description.abstract | 奈米尺度下的金屬共振腔可以在入射光波時達到有效的抗反射。利用圓柱狀的金屬共振腔結構可以使光在腔體內形成共振,增強強度並且大幅降低光的反射量,同時能允許大的入射角度。本篇論文利用 RSoft 以及 COMSOL 兩套模擬軟體針對此種圓柱狀共振腔進行研究,發現在不同的幾何尺寸與材料下可以在反射頻譜上形成多個峰值,分別對應到不同的共振模態,並且在不同模態之下對光反射效率以及容忍入射角度都不同,本篇論文針對不同模態共振,設計出了反射效率可達 ,並且入射容忍角度可達 。本篇論文還針對此種共振腔進行了兩種應用的設計探討:光學折射率感測器以及太陽能用途之抗反射結構,在光學感測器方面更設計出可以使用多種感測方法的結構。 | zh_TW |
| dc.description.abstract | Nanocavities in metals have been demonstrated to act as efficient anti-reflection devices. Cylindrical cavities in a metallic substrate can form good optical resonators for enhancing the light intensity and reducing the reflection greatly in a wide range of angles of incidence. In this thesis, the simulation tools, RSoft and COMSOL, are used for the analysis of the resonant modes in the nano-cylinder resonators. It is observed that several peaks in the reflection spectrum can be obtained for the nano-cylinder resonators of different sizes as well as filled with different materials. Different resonant modes exhibit different reflection levels and allow different incident angles. In this thesis, nano-cylinder resonators can be used as highly-sensitive optical sensors and as potential anti-reflection devices for solar-cells.
Key word: metal resonator、optical sensor、solar cell、antireflection structure、Rigorous Coupled-Wave Analysis、Finite Element Method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:24:16Z (GMT). No. of bitstreams: 1 ntu-98-R96941069-1.pdf: 4890276 bytes, checksum: 1d532a5db104361819b4d038218bbdd8 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 II
Abstract III 目錄 IV 圖列 VI 第一章 緒論 1 1.1 光電電磁學 1 1.2 共振腔與光學共振腔 1 1.3 研究動機 2 第二章 研究背景 3 2.1 Fabry-Perot共振原理[2] 3 2.2 金屬矩形共振腔[4] 6 2.3 光學生物感測器[5] 8 2.4 太陽能與抗反射結構 9 2.5 模擬方法與工具軟體 10 2.5.1 嚴格耦合波向量分析法 (Rigorous Coupled-Wave Analysis) 10 2.5.2 有限元素法 (Finite Element Method,FEM)[8, 9] 14 2.6 文獻回顧 16 2.6.1 金屬奈米結構不產生表面電漿達成大入射角的光全吸收.......16 2.6.2 三孔洞微結構光纖之表面電漿共振感測器 18 第三章 奈米柱狀共振腔之研究 20 3.1 柱狀共振腔之共振理論[11, 12] 20 3.2 共振模態分析 28 第四章 奈米柱狀共振腔之應用 35 4.1 光學感測器應用 35 4.1.1 金之反射波長峰值對折射率變化感測 35 4.1.2 金之反射對折射率變化感測 39 4.1.3 金之角度對折射率變化感測 40 4.1.4 銀之反射波長峰值對折射率變化感測 44 4.1.5 銀之反射對折射率變化感測 49 4.1.6 銀之角度對折射率變化感測 50 4.2 太陽能用途抗反射 53 4.2.1 多層排列 53 4.2.2 銀之二氧化矽與矽抗反射表現 61 4.2.3 矽對照結構 66 4.2.4 CuPc之抗反射效率 70 第五章 結論 75 參考文獻 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 金屬共振腔 | zh_TW |
| dc.subject | 光學感測器 | zh_TW |
| dc.subject | 抗反射裝置 | zh_TW |
| dc.subject | 嚴格耦合波向量分析法 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | solar cell | en |
| dc.subject | optical sensor | en |
| dc.subject | metal resonator | en |
| dc.subject | Finite Element Method | en |
| dc.subject | Rigorous Coupled Wave Analysis | en |
| dc.subject | antireflection structure | en |
| dc.title | 奈米柱狀金屬共振腔對於光吸收的設計與應用 | zh_TW |
| dc.title | Design and Applications of Nano-cylinder Resonators in Metals for Light Absorption | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林啟萬,魏培坤 | |
| dc.subject.keyword | 金屬共振腔,光學感測器,太陽能電池,抗反射裝置,嚴格耦合波向量分析法,有限元素法, | zh_TW |
| dc.subject.keyword | metal resonator,optical sensor,solar cell,antireflection structure,Rigorous Coupled Wave Analysis,Finite Element Method, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
