Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾萬年(Wann-Nian Tzeng)
dc.contributor.authorNico Jose Sarmiento Leanderen
dc.contributor.author林德zh_TW
dc.date.accessioned2021-06-15T02:24:15Z-
dc.date.available2010-08-19
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-18
dc.identifier.citationAbe S, Yodo T, Matsubara N, Iguchi K (2007). Distribution of two sympatric amphidromous grazing fish Plecoglossus activelis and Sicyopterus japonicus along the course of a temperate river. Hydrobiologia 575: 415-422.
Allendorf FW and Phelps SR (1981). Use of allelic frequencies to describe population structure. Canadian Journal of Fisheries and Aquatic Sciences 38: 1507-1514.
Allibone RM and Wallis GP (1993). Genetic variation and diadromy in some native New Zealand galaxiids (Teleostei: Galaxiidae). Biological Journal of the Linnean
Society 50: 19-33.
Akihito, Iwata A, Kobayashi T, Ikeo K, Imanishi T, Ono H, Umehara Y, Hamamatsu C, Sugiyama K, Ikeda Y, Sakamoto K, Fumihito A, Ohno S, Gojobori T (2000). Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of
mitochondrial cytochrome b genes. Gene 259: 5–15.
Aoki I, Miyashita K (2000). Dispersal of larvae and juveniles of Japanese anchovy Engraulis japonicus in the Kuroshio Extension and Kuroshio-Oyashio transition regions, western North Pacific Ocean. Fisheries Research 49 (2): 155-164.
Avise JC, Helfman GS, Saunders NC, Hales LS (1986). Mitochondrial DNA differentiation in north Atlantic eels: population genetic consequences of an unusual life history pattern. Proceedings of the National Academy of Science
83(12): 4350-4354.
Avise JC, Vrijenhoek RC (1987). Mode of inheritance and variation of mitochondrial DNA in hybridogenetic fishes of the genus Poeciliopsis. Molecular Biology and
Evolution 4:514-525.
Avise JC (1994). Molecular markers, natural history and evolution. Chapman and Hall, New York.
Avise JC (2001). Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts, USA.
Avise JC 2004. Molecular markers, natural history and evolution, 2nd edition.Sinauer Associates, Sunderland, Massachusetts.
Baker AJ, Marshall HD (1997). Mitochondrial control region sequences as tools for understanding evolution. In “Avian Molecular Evolution and Systematics”. Mindell, D.P. (ed.) American Ornithologists’ Union, pp. 51-81.
Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000). Biogeography: a marine Wallace’s line? Nature 406:692-693.
Barratt EM, Gurnell J, Malarky G, Deaville R, Bruford MW (1999). Genetic structure of fragmented populations of red squirrel (Sciurus vulgaris) in the UK. Molecular
Ecology 8: s55-s63.
Bay LK, Crozier RH, Caley MJ (2006). The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef.
Marine Biology 149(5): 1247-1256.
Bell KNI (1999). An overview of goby-fry fisheries. Naga, The ICLARM Quarterly 22, 4: 30-36.
Bell KNI, Brown JA (1995). Active salinity choice and enhanced swimming endurance in 0 to 8-day old larvae of diadromous gobies, including Sicydium punctatum in
Dominica, West Indies. Marine Biology 121: 409-417.
Bernardi G (2000). Barriers to gene flow in Embiotoca jacksoni, a marine fish lacking a pelagic larval stage. Evolution 54(1): 226-237.
Bernardi G, Findley L, Rocha-Olivares A (2003). Vicariance and dispersal across Baja California in disjunct marine fish populations. Evolution 49: 1599-1609.
Bernardi G, Vagelli A (2004). Population structure in Banggai cardinalfish, Pterapogon kauderni, a coral reef fish species lacking a pelagic larval phase. Marine Biology
145(4): 803-810.
Bernatchez L, Guyomard R, Bonhomme F (1992). DNA sequence variation of mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Molecular Ecology 1: 161-173.
Bernatchez L, Dodson JJ (1994). Phylogenetic relationships among Palearctic and Nearctic whitefish (Coregonus sp.) populations as revealed by mitochondrial DNA variation. Canadian Journal of Fisheries and Aquatic Sciences 51(Suppl. 1): 240-251.
Bernatchez L, Chouinard A, Lu G (1999). Integrating molecular genetics and ecology in speciation studies: coregonid fishes as a model system. Biological Journal of the Linnean Society 68: 173-194.
Berrebi P, Cattaneo-Berrebi, Valade P, Ricou JF and Hoareau T (2005). Genetic homogeneity in eight freshwater populations of Sicyopterus lagocephalus, an amphidromous gobiid of La Reunion Island. Marine Biology 148 (10): 179-188.
Billington N (2003). Mitochondrial DNA. In “Population genetics: principles and applications for fisheries scientists”. Hallermen, E.M. (ed). American Fisheries
Society, Bethesda, Maryland, pp 59-100.
Bohonak AJ (1999). Dispersal, gene flow and population structure. Quarterly Review of Biology 74:21-45
Bosc P, Valade P, Lim P, Berrebi P, Feunteun E (2003). Connaissance de l’ etat des peuplements de poissons et de macrocrustaces des eaux douces de La Reuinion, Caracterisation des especes endemiques, biorepartition et application a la gestion: Programme Ecosystemes Tropicaux 1999-2002 G.I.P. ECOFOR: 240 pp.
Bowen BW, Bass AL, Muss A, Carlin J, Robertson DR (2006). Phylogeography of two Atlantic squirrelfishes (Family Holocentridae): exploring links between pelagic larval duration and population connectivity. Marine Biology 149: 899-913.
Brown WM (1983). Evolution of animal mitochondrial DNAs. In “Evolution of genes and proteins”. Nei, M. and Koehn, R.K. (eds.). Sinauer, Sunderland, Massachusetts, pp. 62-88.
Brown JR, Beckenbach AT, Smith MJ (1993). Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Molecular Biology and Evolution 10: 326-341.
Bucklin A, Wiebe PH, Smolenack SB, Copley NJ Clarke ME (2002). Integrated biochemical, molecular genetic and bioacoustical analysis of mesoscale variability of the euphausiid Nematoscelis difficilis in the California Current. Deep-Sea Research Part 1, Oceanographic Research Papers 49: 437-462.
Chang KC, Han YS, Tzeng, WN (2007). Population genetic structure among intra-annual arrival waves of the Japanese eel Anguilla japonica in northern Taiwan. Zoological Studies 46(5): 583-590.
Cheng PW, Tzeng WN (1996). Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Marine Ecology Progress
Series 131: 87-96.
Chuang WS, Li HW, Tang TY, Wu CK (1993). Observations of the countercurrent on the inland shore side of the Kuroshio Northeast of Taiwan. Journal of Oceanography 49: 581-592.
Chubb AL, Zink RM, Fitzsimons JM (1998). Patterns of mtDNA variation in Hawaii freshwater fishes: the phylogeographic consequences of amphidromy. Journal of Heredity 89: 8-16.
Cowen, RK, Paris CB, Srinivasan A (2006). Scaling of population connectivity in marine populations: open or closed? Science 311: 522-527.
Cowen RK, Gawarkiewicz G, Pineda J, Thorrold SR, Werner FE (2007). Population connectivity in marine systems, an overview. Oceanography 20(3): 14-21.
Cunningham CW, Collins T (1998). Beyond area relationships: extinction and recolonization in marine molecular biogeography. In “Molecular Approaches to Ecology and Evolution”, DeSalle, R. and Schierwater, B. (eds.). Birkhauser Verlag, Basel, Switzerland, pp. 297-322.
Darling KF, Wade CM, Stewart IA, Kroon D, Dingle R, Brown AJL (2000). Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405: 43.
Dawson MN, Louie KD, Barlow M, Jacobs DK, Swift CC (2002). Comparative phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius newberryi (Teleostei, Gobiidae) across the California Transition zone. Molecular
Ecology 11(6): 1065-1075.
Delacroix P, Champeau A (1992). The breeding in freshwater of Sicyopterus lagocephalus, a gobiid fish of the Reunion Rivers. Hydroecologie Appliquee 4: 49-63.
de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J (1999). Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proceedings of the National Academy of Sciences (USA) 96:2864-2868.
Dijkstra LH, Jellyman DJ (1999). Is the subspecies classification of the freshwater eels Anguilla australis Richardson and A. australis schmidtii Phillipps still valid? Marine and Freshwater Research 50: 261-263.
Doherty PJ, Planes S, Mather P (1995). Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology 76(8): 2373-2391.
Dotu Y, Mito S (1955). Life history of the gobioid fish, Sicydium japonicum Tanaka. Science Bulletin of the Faculty of Agriculture, Kyushu University 15: 213-221 (in Japanese with English abstract).
Ducroz JF, Stubbe M, Saveljev AP, Heidecke D, Samjaa R, Ulevicius A, Stubbe A, Durka W (2005). Genetic variation and population structure of the Eurasian beaver Castor fiber in Eastern Europe and Asia. Journal of Mammalogy 86(6):1059-1067.
Excoffier L, Laval G, Schneider S (2005). Arlequin ver. 3.0 : an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online
1: 47-50.
Faber JE, Stepien CA (1997). The utility of mitochondrial DNA control region sequences for analyzing phylogenetic relationships among populations, species and genera of the Percidae. In “Molecular Systematics of Fishes”. Kocher, T.D. and Stepien, C.A. (eds.) Academic Press, San Diego, California, pp. 129-143.
Fitzsimons JM, Zink RM, Nishimoto RT (1990). Genetic variation in the Hawaiian goby, Lentipes concolor. Biochemical Systematics and Ecology 18: 81-83.
Fievet E, Eppe R (2002). Genetic differentiation among populations of the amphidromous shrimp Atya innocuous (Herbst) and obstacles to their upstream
migration. Archiv fur Hydrobiologie 153: 287-300.
Fukui S (1979). Rock climbing behavior of the goby, Sicyopterus japonicus. Japanese Journal of Ichthyology 26: 84-88.
Garber AF, Tringali MD, Stuck KC (2004). Population structure and variation in red snapper (Lutjanus campechanus) from the Gulf of Mexico and Atlantic Coast of Florida as determined for mitochondrial DNA control region sequence. Marine Biotechnology 6: 175-185.
Gilg MR, Hilbish TJ (2003). Patterns of larval dispersal and their effect on the maintenance of a blue mussel hybrid zone in southwestern England. Evolution 57:1061-1077.
Grosberg RK, Cunningham CW (2001). Genetic structure in the sea: from populations to communities. In “Marine Community Ecology”, Bertness, M.D., Gaines, S. and Hay, M.E. (eds.). pp. 61-84.
Guarniero I, Franzelletti S, Ungaro N, Tommasini S, Piccinetti C, Tinti F (2002). Control region haplotype variation in the central Mediterranean common sole indicates geographical isolation and population structuring in Italian stocks. Journal of Fish Biology 60: 1459-1474.
Harpending HC (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66: 591-600.
Hiramatsu M, Ii K, Okubo H, Huang KL, Huang CW (2001). Biogeography and origin of Lilium longiflorum and L. formosanum (Liliaceae) endemic to the Ryukyu Archipelago and Taiwan as determined by allozyme diversity. American Journal of Botany 88: 1230-1239.
Hirakawa N, Suzuki N, Narimatsu Y, Saruwatari T, Ohno A (2007). The spawning and settlement season of Chlorophthalmus albatrossis along the Pacific coast of Japan. The Raffles Bulletin of Zoology, Supplement N0. 14: 167-170.
Hoareau TB, Lecomte-Finiger R, Bosc P, Berrebi P (2004). Surprising larval life duration of Sicyopterus and Cotylopus gobiids in Mascarene Islands Poster au. In “Third International Symposium on fish otolith research and application”. Townsville, Queensland, Australia, 11-16 July 2004.
Hoareau TB, Lecomte-Finiger R, Grondin HP, Conand C, Berrebi P (2007). Oceanic larval life of La Reunion “bichiques”, amphidromous gobiid post-larvae. Marine
Ecology Progress Series 333: 303-308.
Hodges MH, Allendorf FW (1998). Population genetics and pattern of larval dispersal of the endemic amphidromous gastropod Neritina granosa (Prosobranchia: Neritidae). Pacific Science 52: 237-249.
Hutchinson CA, Newbold JE, Potter SS, Edgell MH (1974). Maternal inheritance of mammalian mitochondrial DNA. Nature (London) 251: 536-538.
Iguchi KI (2007). Limitations of early seaward migration success in amphidromous fishes. Bishop Museum Bulletin in Cultural and Environmental Studies 3:75-85.
Iida M, Watanabe S, Shinoda A, Tsukamoto K (2008). Recruitment of the amphidromous goby Sicyopterus japonicus to the estuary of the Ota River, Wakayama, Japan. Environmental Biology of Fishes 83(3): 331-341.
Iwata A, Hosoya S, Larson HK (2001). Paedogobius kimurai, a new genus and species of goby (Teleostei: Gobioidei: Gobiidae) from the west Pacific. Records-Australian
Museum 53: 103-112.
Ju YM (2001). Morphological taxonomy and molecular evolution of mtDNA of genus Sicydiinae and the reproductive ecology of Sicyopterus japonicus of Taiwan. MS Thesis, Institute of Marine Resources, University of Sun Yat-Sen, Taiwan.
Kano Y, Kase T (2003). Systematics of the Neritilia rubida complex (Gastropoda: Neritiliidae): three amphidromous species with overlapping distributions in the Indo-Pacific. Journal of Molluscan Studies 69(3): 273-284.
Katoh K, Asimenos G, Toh H (2009) Multiple Alignment of DNA Sequences with MAFFT. In “Bioinformatics for DNA Sequence Analysis”. Posada, D. (ed) Methods in Molecular Biology 537:39-64
Keith P (2003). Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and the Caribbean regions. Journal of Fish Biology 63: 831-847.
Keith P, Galewski T, Cattaneo-Berrebi G, Hoareau T, Berrebi P (2005). Ubiquity of Sicyopterus lagocephalus (Teleostei: Gobioidei) and phylogeography of the genus Sicyopterus in the Indo-Pacific area inferred from mitochondrial cytochrome b gene. Molecular Phylogenetics and Evolution 37: 721-732.
Kimura S, Tsukamoto K and Sugimoto T (1994). A model for the larval migration of the Japanese eel: roles of the trade winds and salinity front. Marine Biology 119 (2):
185-190.
Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of
Science U.S.A. 86: 6196-6200.
Kutsuwada K (1987). Monthly maps of the surface wind stress fields over the north Pacifc during 1961-1984. Bulletin of the Ocean Research Institute, University of Tokyo 24: 1-100.
Lance SL, Maldonado JE, Bocetti CI, Pattee OH, Ballou JD, Fleischer RC (2003). Genetic variation in natural and translocated populations of the endangered Delmarva fox squirrel (Sciurus niger cinereus). Conservation Genetics 4(6): 707-718.
Levin LA (2006). Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology 46, 3: 282-297.
Liang WD, Tang TY, Yang YJ, Ko MT, and Chuang WS (2003). Upper-ocean currents around Taiwan. Deep-Sea Research II 50: 1085-1105.
Librado P, Rozas J 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452 doi: 10.1093/bioinformatics/
btp187.
Lindstrom DP (1999). Molecular species identification of newly hatched Hawaiian amphidromous gobioid larvae. Marine Biotechnology 1: 167-174.
Liu SV, Kokita T, Dai CF (2008). Population genetic structure of the neon damselfish (Pomacentrus coelestis) in the northwestern Pacific Ocean. Marine Biology 154: 745-753.
Maie T, Schoenfuss HL Blob RW (2007). Ontogenetic scaling of body proportions in waterfall-climbing gobiid fishes from Hawaii and Dominic: implications for locomotor function. Copeia 3: 755-764.
Manacop PR (1953). The life historyaand habits of the goby Sicyopterus extraneus Herre (anga) Gobiidae with an account of the goby fry fishery of Cagayan River, Oriental Misamis, Mindanao, Philippines. Philippine Journal of Fisheries 2: 1-60.
May B, Grewe PM (1993). Fate of maternal mtDNA following 60Co inactivation of maternal nuclear DNA in unfertilized salmonid eggs. Genome 36: 725-730.
McDowall RM (1992). Diadromy: origins and definitions of terminology. Copeia: 248-251.
McDowall RM (1993). A recent marine ancestry for diadromous fishes? Sometimes yes, but mostly no. Environmental Biology of Fishes 37: 329-335.
McDowall RM (1997a). Is there such thing as amphidromy? Micronesica 30: 3-14.
McDowall RM (1997b). The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Reviews in Fish Biology and Fisheries 7: 443-462.
McDowall RM (2001). Diadromy, diversity and divergence: implications for speciation processes in fishes. Fish and Fisheries 2: 278-285.
McDowall RM (2003). Hawaiian biogeography and the island’s freshwater fish fauna. Journal of Biogeography 30: 703-710.
McDowall RM (2007a). Hawaiian stream fishes: the role of amphidromy in history, ecology and conservation biology. Bishop Museum Bulletin in Cultural and Environment Studies 3: 3-9.
McDowall RM (2007b). On amphidromy, a distinct form of diadromy in aquatic organisms. Fish and Fisheries 8: 1-13.
McDowall RM (2008a). Early hatch: a strategy for safe downstream larval transport in amphidromous gobies. Reviews in Fish Biology and Fisheries 19(1): 1-8.
McDowall RM (2008b). Diadromy, history and ecology: a question of scale. Hydrobiologia 602: 5-14.
Metzger EJ, Hulburt HE (2001). The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. Journal of Physical Oceanography 31: 1712-1732.
Michel C, Hicks BJ, Stolting KN, Clarke AC, Stevens MI, Tana R, Meyer A, van den Heuvel MR (2008). Distinct migratory and non-migratory ecotypes of an endemic New Zealand eleotrid (Gobiomorphus cotidianus) - implications for incipient speciation in island freshwater fish species. BMC Evolutionary Biology 8: 49-63.
Miller MJ, Otake T, Minagawa G, Inagaki I, Tsukamoto K (2002). Distribution of leptocephali in the Kuroshio Current and East China Sea. Marine Ecology Progress
Series 235: 279-288.
Mindell DP, Thacker CE (1996). Rates of molecular evolution: phylogenetic issues and applications. Annual Review of Ecology and Systematics 27: 279-303.
Mochizuki K, Fukui S (1983). Development and replacement of upper jaw teeth in Gobiid fish Sicyopterus japonicus. Japanese Journal of Ichthyology 30(1): 27-36.
Montilla J (1991). The ipon fisheries of northern Luzon. The Philippine Journal of Science 45, 1: 61-75.
Moritz C, Dowling TE, Brown W M (1987). Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics 18: 269-292.
Motokawa M, Suzuki H, Harada M, Lin LK, Koyasu K, Oda SI (2000). Phylogenetic relationships among East Asian species of Crocidura (Mammalia, Insectivora) inferred from mitochondrial cytochrome b gene sequences. Zoological Science 17: 497-504.
Murphy CA and Cowan JH (2007). Production, marine larval retention or dispersal and recruitment of amphidromous Hawaiian gobioids: issues and implications. Bishop
Museum in Cultural and Environmental Studies 3: 63-74.
Myers GS (1949). Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia: 89-97.
Nishijima S and Shikitani N (1994). Streams on islands. In “Crystal streams on Ryukyu Islands,” Ikehara S and Shokita S (eds). Okinawa-syuppan, Okinawa, Japan.
Nitani H (1972). Beginning of the Kuroshio. In “Kuroshio- its physical aspects”, Stommel, H. and Yoshida, K. (eds.). University of Tokyo Press, pp. 129-163.
Ovenden JR (1990). Mitochondrial DNA and marine stock assessment: A review. Australian Journal of Marine and Freshwater Research 41:835-853.
Page TJ, Baker AM, Cook BD, Hughes JM (2005). Historical transoceanic dispersal of a freshwater shrimp: the colonization of the South Pacific by the genus Paratya
(Atyidae). Journal of Biogeography 32: 581-593.
Pineda J, Hare JA, Sponaugle S (2007). Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20(3): 22-39.
Planes S, Parroni M, Chauvet C (1998). Evidence of limited gene flow in three species of coral reef fishes in the lagoon of New Caledonia. Marine Biology 130(3): 361-
368.
Planes S, Doherty PJ, Bernardi G (2001). Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis polyacanthus, within the Great Barrier Reef and the Coral Sea. Evolution 55(11): 2263-2273.
Qiu B (2001). Kuroshio and Oyashio Currents. In “Encyclopedia of Ocean Sciences”, Academic Press, New York, pp. 1413-1425.
Radtke RL, Kinzie RA, Folsom SD (1988). Age at recruitment of Hawaiian freshwater gobies. Environmental Biology of Fishes 23, 03: 205-213.
Radtke RL, Kinze RA, Shafer DJ (2001). Temporal and spatial variation in length of larval life and settlement of the Hawaiian amphidromous goby Lentipes concolor. Journal of Fish Biology 59:928-938.
Rocha-Olivares A, Garber NM, Stuck KC (2000). High genetic diversity, large inter-oceanic divergence and historical demography of the striped mullet. Journal of Fish Biology 57: 1134-1149.
Rogers AR, Harpending HC (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 49: 552-569.
Rubicz RC, Melton PE and Crawford MH (2006). Molecular markers in anthropogenic studies. In “Anthropological genetics: theory, methods and applications”. Cambridge University Press, pp. 141-209.
Rynearson TA , Armbrust EV (2000). DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnology and Oceanography 45: 1329-1340.
Sassa C, Kawaguchi K, Hirota Y, Ishida M (2004). Distribution patterns of larval myctophid fish assemblages in the subtropical–tropical waters of the western North
Pacific. Fisheries Oceanography 13(4): 267- 282.
Schoenfuss HL, Blob RW (2003). Kinematics of waterfall climbing in Hawaiian freshwater fishes (Gobiidae): vertical propulsion at the aquatic terrestrial interface. Journal of Zoology of London 261: 191-205.
Sekiguchi H, Inoue N (2002). Recent advances in larval recruitment processes of Scyllarid and Palinurid lobsters in Japanese Waters. Journal of Oceanography 58(6): 747-757.
Shedlock AM, Parker JD, Crispin DA, Pietsch TW, Burmer GC (1992). Evolution of the salmonid mitochondrial control region. Molecular Phylogenetics and Evolution 1, 3:179-192.
Shen KN, Lee YC, Tzeng WN (1998). Use of microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zoological Studies 37, 4: 322-329.
Shen KN, Tzeng WN (2002). Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology Progress Series 228: 205-211.
Shen KN, Tzeng WN, (2008). Reproductive strategy and recruitment dynamics of amphidromous goby Sicyopterus japonicus as revealed by otolith microstructure. Journal of Fish Biology 73(10): 2497-2512.
Shiao JC (1998). Early life history and fry resources of amphidromous gobies in Hsuikuluan River. Master Thesis, National Tsing Hua University, Hsinchu, Taiwan
(in Chinese with English abstract).
Shulman MJ, Bermingham E (1995). Early life histories, ocean currents and the population genetics of Caribbean reef fishes. Evolution 49(5): 897-910.
Slatkin M (1987). Gene flow and the geographical structure of natural populations. Science 236: 87-92.
Slatkin M, Hudson RR (1991) Pairwise comparison of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555-562.
Springer VG (1983). Tyson belos, new genus and species of Western Pacific Fish (Gobiidae, Xenisthminae), with discussions of Gobioid osteology and classification. Smithsonian Contributions to Zoology No. 390, 40 pp.
Stepien CA (1995). Population genetic divergence and geographic patterns of DNA sequences: examples from marine and freshwater fishes. In “Evolution and the Aquatic Ecosystem: Defining Unique Units in Population Conservation”. Nielsen, J. (ed.). American Fisheries Society Symposium, Bethesda, M.D., pp 263-287.
Sotka EE, Palumbi SR (2006). The use of genetic clines to estimate dispersal distances of marine larvae. Ecology 87(5): 1094-1103.
Sparks JS, Nelson DW (2004). Review of the Malagasy Sicydiinae gobies (Teleostei: Gobiidae), with description of a new species and comments on the taxonomic status of Gobius lagocephalus Pallas, 1770. American Museum of Natural History Novitates 3440: 1-20.
Sugisaki H (1996). Distribution of larval and juvenile Japanese sardine (Sardinops melanostictus) in the western North Pacific and its relevance to predation on these stages. In “Survival Strategies in Early Life Stage of Marine Resources”. Watanabe, Yamashita and Dozeki (eds.) Rotterdam: Balkema, pp. 261- 270.
Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599.
Tarr CL (1995). Primers for amplification and determination of mitochondrial control-region sequences in oscine passerines. Molecular Ecology 4: 527-529.
Taylor MS, Hellberg ME (2003). Genetic evidence for local retention of pelagic larvae in the Caribbean Reef fish. Science 299(5603): 107-109.
Thacker CE (2003). Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution 26: 354-368.
Tsukamoto K (1990). Recruitment mechanism of the eel Anguilla japonica, to the Japanese coast. Internationale Revue der gesamten Hydrobiologie und Hydrographie 75 (6): 865.
Tzeng CS, Lin YS, Lin SM, Wang TY, Wang FY (2006). The phylogeography and population demographics of selected freshwater fishes in Taiwan. Zoological Studies 45(3): 285-297.
Waples RS, (1987). A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41(2): 385-400.
Waples RS, Teel DJ, Myers JM, Marshall AR (2004). Life-history divergence in chinook salmon: historic contingency and parallel evolution. Evolution 58(2): 386-
403.
Wares JP (2002). Community genetics in the Northwestern Atlantic intertidal. Molecular Ecology 11: 1131-1144.
Watanabe S, Iida M, Kimura Y, Feunteun E, Tsukamoto K (2006). Genetic diversity of Sicyopterus japonicus as revealed by mitochondrial DNA. Coastal Marine Science
30, 2: 473-47.
Wilson AJ, Gislason D, Skulason S, Snorrason SS, Adams CE, Alexander G, Danzmann RG, Ferguson MM (2004). Population genetic structure of Arctic charr, Savelinus alpinus from northwest Europe on large and small spatial scales. Molecular Ecology 13: 1129-1142.
Wirth T, Bernatchez L (2001). Genetic evidence for panmixia in the European eel. Nature 409: 1037-1040.
Wyritki K, Meyers G (1975a). The trade wind field over the Pacific Ocean, Part 1. Hawaiian Institute of Geophysics, University of Hawaii, HIG-75-1.
Wyritki K, Meyers G (1975b). The trade wind field over the Pacific Ocean, Part 2. Hawaiian Institute of Geophysics, University of Hawaii, HIG-75-2.
Yamasaki N, Maeda K (2007). Pelagic larval duration and morphology at recruitment of Stiphodon percnopterygionus (Gobiidae: Sicydiinae). The Raffles Bulletin of Zoology, Supplement No. 14: 209-214.
Zink RM, Fitzsimons JM, Dittman DL, Reynolds DR, Nishimoto RT (1996). Evolutionary genetics of Hawaiian freshwater fish. Copeia 1996: 330-335.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43606-
dc.description.abstract日本禿頭鯊是兩棲洄游性魚類。其成魚雖然在淡水中產卵,但其仔魚卻有很長的海洋浮游期 (PLD, 125-186 days),而長海洋浮游期可能會抑制族群的遺傳分化。為了驗證此假說,本實驗於2007至2009年在台灣東部的福隆、南澳以及花蓮採集剛溯河之日本禿頭鯊後期仔魚120尾並分析其粒腺體DNA控制區(465bp)的遺傳變異。此外,基因庫中來自日本三個不同地點的75尾日本禿頭鯊的相同基因片斷亦用於分析,以期能了解整個西北太平洋日本禿頭鯊的族群遺傳結構。聚類分析樹(neighbor-joining tree)及分子變異分析(AMOVA, ΦST = 0.00401, P>0.05) 結果顯示,此八個樣本間並沒有顯著的遺傳分化。但成對ΦST 的分析確顯示花蓮秋季樣本和其他五個樣本間有明顯遺傳差異,顯示台灣秋季的樣本在東北季風的吹拂下可能限制了魚苗向北的輸送。另一方面,其他樣本間缺乏遺傳分化可能和海流漂送仔稚魚造成族群間基因交流有關。日本禿頭鯊的平均仔稚魚浮游期在日本 (208 + 22 days) 要比台灣 (163.72 + 12.79 days) 多45天,這段時間剛好足以讓日本禿頭鯊的仔魚從台灣經由黑潮輸送到日本。因此,即使日本禿頭鯊的成魚是分布在相互隔離的淡水系統中,仍然可以經由仔稚魚長距離的散布來增加族群間基因的流動,進而抑制了族群遺傳的分化。因此,長海洋仔稚浮游期在日本禿頭鯊族群的散布距離及族群結構上扮演非常重要的角色。zh_TW
dc.description.abstractThe goby Sicyopterus japonicus is an amphidromous species that spawns in freshwater and has a long marine pelagic larval duration which may diminish population genetic differentiation. To prove this hypothesis, a total of 465 base pairs in the control region of the mitochondrial DNA in S. japonicus were analyzed from 119 specimens collected from 3 different river systems in Fulong, Nan-ao and Hualien in eastern Taiwan during 2007 to 2009. Additional 74 mtDNA sequences from Japan were also included in the analysis to have a general view of its population genetic structure in the northwestern Pacific. Neighbor-joining tree and AMOVA analyses indicated that the eight populations has no significant differentiation (ΦST = 0.00401, P>0.05). The number of migrants per generation (Nm), on the other hand, ranges from 9.25787 (between HW-AUT and KOC) up to infinity. Infinite value of Nm indicates that an extremely high gene flow has occurred between the Taiwan and Japan populations particularly during spring. Significant genetic differences however were observed for specimens collected in Taiwan during autumn and winter seasons in the Pairwise ΦST test, indicating that unfavorable environmental condition (e.g. cold water temperature) might have restricted dispersal of the goby larvae during these seasons and affected the survival and the recruitment of the goby larvae in Japan. On the other hand, the absence of population genetic differentiation found in spring is probably due to gene flow that occurs during the dispersal and transport of the larvae from the south to the north. Meanwhile, the difference in mean pelagic larval duration (PLD) between Japan (208 + 22 days) and Taiwan (163.72 + 12.79 days) is approximately 45 days, which allows the larvae of this species to disperse from Taiwan to Japan by the Kuroshio Current. Although the adults of this species are distributed among isolated freshwater systems, gene flow and larval dispersal can take place to restrict population genetic differentiation. Accordingly, it is no doubt that long marine PLD and oceanic current seem to play an important role in determining the larval dispersal and subsequently, the population structuring of this goby species.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:24:15Z (GMT). No. of bitstreams: 1
ntu-98-R96b45029-1.pdf: 2225061 bytes, checksum: b2d4e4bab7624f6b5f192decc039fda7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTABLE OF CONTENTS
COVER PAGE……………………………………………………………i
APPROVAL SHEET………………………………………………………1
ACKNOWLEDGMENTS…………………………………………………….2
TABLE OF CONTENTS………………………………………………….4
LIST OF TABLE……………………………………………………….6
LIST OF FIGURES…………………………………………………….7
LIST OF APPENDICES………………………………………………..8
CHINESE ABSTRACT…………………………………………………..9
ENGLISH ABSTRACT………………………………………………….10
1 INTRODUCTION…………………………………………………….12
1.1 Diadromy and population genetic structure…12
1.2 Pelagic larval duration and
population connectivity………………………......15
1.3 Basic concept of mitochondrial DNA………….17
1.4 Species description……………..............21
1.5 Description of the current system in the
northwestern Pacific……………………...........23
1.6 Objectives and purpose of the study…………24
2 MATERIALS AND METHODS…………………………………………26
2.1 Sampling locations and fish collection…….26
2.2 DNA extraction, PCR amplification and
sequencing………………………...................27
2.2.1 DNA extraction procedure………………….27
2.2.2 mtDNA control region PCR
amplification and sequencing……………….....27
2.3 Data analyses………………………………………28
2.3.1 mtDNA control region sequence
analysis…………………………………...........28
2.3.2 Phylogenetic analysis………………………28
2.3.3 Population genetic structure and
historical demography…………………..........29
3 RESULTS……………………………………………………………30
3.1 Size and color pattern of the
Sicyopterus japonicus postlarvae
at recruitment……………………………...........30
3.2 Characteristics of the mtDNA control
region sequence of Sicyopterus japonicus……….31
3.3 Phylogenetic tree reconstruction for
Sicyopterus japonicus ……………...............32
3.4 Population genetic structure and gene
flow in Sicyopterus japonicus …….............33
3.5 Hierarchical AMOVA and patterns of
historical demography……......................34
3.6 Geographic variation in the length of the
pelagic larval duration between Taiwan and
Japan……………….…………………………………….35
4 DISCUSSIONS………………………………………………………36
4.1 The genetic diversity of Sicyopterus
japonicus………………..........................36
4.2 The role of trade winds and current
system in determining the larval
transport......................................37
4.3 Possible reasons for the lack of
population genetic differentiation in
Sicyopterus japonicus populations…………………39
4.4 Genetic differentiation of the
Sicyopterus japonicus populations
during autumn and summer seasons………………….41
4.5 The possible origins of the
Sicyopterus japonicus recruiting in the
northwestern Pacific………………………………….42
5 CONCLUSIONS………………………………………………………43
REFERENCES………………………………………………………….45
TABLES……………………………………………………………….62
FIGURES……………………………………………………………..69
APPENDICES………………………………………………………….75
dc.language.isoen
dc.title西北太平洋兩棲洄游蝦虎魚日本禿頭鯊的族群遺傳結構之研究zh_TW
dc.titlePOPULATION GENETIC STRUCTURE OF THE AMPHIDROMOUS GOBY Sicyopterus japonicus IN THE NORTHWESTERN PACIFICen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee韓玉山(Yu-San Han),陳義雄(I-Shiung Chen),沈康寧(Kang-Ning Shen)
dc.subject.keyword蝦虎魚,粒腺體DNA,仔魚浮游期,瓢鰭蝦虎魚亞科,仔魚散布,zh_TW
dc.subject.keywordgoby,mitochondrial DNA,pelagic larval duration,Sicydiinae,larval dispersal,en
dc.relation.page258
dc.rights.note有償授權
dc.date.accepted2009-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved