請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43601
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林璧鳳(Bi-Fong Lin) | |
dc.contributor.author | Yi-Ting Tsai | en |
dc.contributor.author | 蔡依廷 | zh_TW |
dc.date.accessioned | 2021-06-15T02:24:10Z | - |
dc.date.available | 2014-08-20 | |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-17 | |
dc.identifier.citation | 謝貴雄 (1995) 小兒氣喘之預防和處理。中華民國兒科醫學會雜誌,36 : S9-20
陳盈竹 (2004) 葉酸營養狀況對自體免疫小鼠組織 L-isoaspartate 含量和免疫反應 的影響 國立台灣大學微生物與生化學研究所 碩士論文 李佩芸 (2005) 口服 Dp2 重組蛋白質對致敏小鼠過敏免疫調節之影響 國立台灣大 學微生物與生化學研究所 碩士論文 許銘志 (2007) 塵蟎蛋白致敏小鼠短期攝取塵蟎蛋白產生口服耐受性的機制探討 國立台灣大學微生物與生化學研究所 碩士論文 吳繼恆 (2008) 具影響干擾素 γ 分泌的食材對 OVA 致敏 BALB/c 小鼠免疫反應的影響 國立台灣大學微生物與生化學研究所 碩士論文 Adams, P.F., and Marano, M.A. (1995). Current estimates from the National Health Interview Survey, 1994. Vital Health Stat 10, 1-260. Akdis, C.A., Blesken, T., Akdis, M., Wuthrich, B., and Blaser, K. (1998). Role of interleukin 10 in specific immunotherapy. J Clin Invest 102, 98-106. Akdis, M., Verhagen, J., Taylor, A., Karamloo, F., Karagiannidis, C., Crameri, R., Thunberg, S., Deniz, G., Valenta, R., Fiebig, H., et al. (2004). Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med 199, 1567-1575. Aroeira, L.S., Cardillo, F., De Albuquerque, D.A., Vaz, N.M., and Mengel, J. (1995). Anti-IL-10 treatment does not block either the induction or the maintenance of orally induced tolerance to OVA. Scand J Immunol 41, 319-323. Asadullah, K., Sterry, W., and Volk, H.D. (2003). Interleukin-10 therapy--review of a new approach. Pharmacol Rev 55, 241-269. Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252. Barbato, A., Turato, G., Baraldo, S., Bazzan, E., Calabrese, F., Tura, M., Zuin, R., Beghe, B., Maestrelli, P., Fabbri, L.M., and Saetta, M. (2003). Airway inflammation in childhood asthma. Am J Respir Crit Care Med 168, 798-803. Barnes, N.C. (1997). Current therapy for asthma: time for a change? J Pharm Pharmacol 49 Suppl 3, 13-16. Barnett, M.L., Kremer, J.M., St Clair, E.W., Clegg, D.O., Furst, D., Weisman, M., Fletcher, M.J., Chasan-Taber, S., Finger, E., Morales, A., et al. (1998). Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 41, 290-297. Beasley, R. (2002). The burden of asthma with specific reference to the United States. J Allergy Clin Immunol 109, S482-489. Bergerot, I., Arreaza, G.A., Cameron, M.J., Burdick, M.D., Strieter, R.M., Chensue, S.W., Chakrabarti, S., and Delovitch, T.L. (1999). Insulin B-chain reactive CD4+ regulatory T-cells induced by oral insulin treatment protect from type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T-cells. Diabetes 48, 1720-1729. Berry, R.J., Li, Z., Erickson, J.D., Li, S., Moore, C.A., Wang, H., Mulinare, J., Zhao, P., Wong, L.Y., Gindler, J., et al. (1999). Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med 341, 1485-1490. Blair, P.J., Bultman, S.J., Haas, J.C., Rouse, B.T., Wilkinson, J.E., and Godfrey, V.L. (1994). CD4+CD8- T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J Immunol 153, 3764-3774. Blank, M., George, J., Barak, V., Tincani, A., Koike, T., and Shoenfeld, Y. (1998). Oral tolerance to low dose beta 2-glycoprotein I: immunomodulation of experimental antiphospholipid syndrome. J Immunol 161, 5303-5312. Blount, B.C., Mack, M.M., Wehr, C.M., MacGregor, J.T., Hiatt, R.A., Wang, G., Wickramasinghe, S.N., Everson, R.B., and Ames, B.N. (1997). Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A 94, 3290-3295. Bosse, Y., and Rola-Pleszczynski, M. (2007). Controversy surrounding the increased expression of TGF beta 1 in asthma. Respir Res 8, 66. Boushey, C.J., Beresford, S.A., Omenn, G.S., and Motulsky, A.G. (1995). A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274, 1049-1057. Busse, W.W., and Lemanske, R.F., Jr. (2001). Asthma. N Engl J Med 344, 350-362. Chang, Y.C., and Hsieh, K.H. (1989). The study of house dust mites in Taiwan. Ann Allergy 62, 101-106. Chapman, M.D., Smith, A.M., Vailes, L.D., and Arruda, L.K. (1997). Defined epitopes: in vivo and in vitro studies using recombinant allergens. Int Arch Allergy Immunol 113, 102-104. Chen, Y., Inobe, J., Marks, R., Gonnella, P., Kuchroo, V.K., and Weiner, H.L. (1995a). Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376, 177-180. Chen, Y., Inobe, J., and Weiner, H.L. (1995b). Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol 155, 910-916. Chen, Y., Inobe, J., and Weiner, H.L. (1997). Inductive events in oral tolerance in the TCR transgenic adoptive transfer model. Cell Immunol 178, 62-68. Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A., and Weiner, H.L. (1994). Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237-1240. Choi, S.W., and Mason, J.B. (2002). Folate status: effects on pathways of colorectal carcinogenesis. J Nutr 132, 2413S-2418S. Chuang, W.L., Liu, H.W., and Chang, W.Y. (1990). Natural killer cell activity in patients with hepatocellular carcinoma relative to early development and tumor invasion. Cancer 65, 926-930. Cook, D.N., Pisetsky, D.S., and Schwartz, D.A. (2004). Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5, 975-979. Coombes, J.L., Siddiqui, K.R., Arancibia-Carcamo, C.V., Hall, J., Sun, C.M., Belkaid, Y., and Powrie, F. (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204, 1757-1764. Crispe, I.N. (2009). The liver as a lymphoid organ. Annu Rev Immunol 27, 147-163. de Waal Malefyt, R., Haanen, J., Spits, H., Roncarolo, M.G., te Velde, A., Figdor, C., Johnson, K., Kastelein, R., Yssel, H., and de Vries, J.E. (1991). Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174, 915-924. Derewenda, U., Li, J., Derewenda, Z., Dauter, Z., Mueller, G.A., Rule, G.S., and Benjamin, D.C. (2002). The crystal structure of a major dust mite allergen Der p 2, and its biological implications. J Mol Biol 318, 189-197. Dhur, A., Galan, P., and Hercberg, S. (1991). Folate status and the immune system. Prog Food Nutr Sci 15, 43-60. Durham, S.R., Ying, S., Varney, V.A., Jacobson, M.R., Sudderick, R.M., Mackay, I.S., Kay, A.B., and Hamid, Q.A. (1996). Grass pollen immunotherapy inhibits allergen-induced infiltration of CD4+ T lymphocytes and eosinophils in the nasal mucosa and increases the number of cells expressing messenger RNA for interferon-gamma. J Allergy Clin Immunol 97, 1356-1365. Ebner, C., Siemann, U., Bohle, B., Willheim, M., Wiedermann, U., Schenk, S., Klotz, F., Ebner, H., Kraft, D., and Scheiner, O. (1997). Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin Exp Allergy 27, 1007-1015. Egan, R.W., Athwahl, D., Chou, C.C., Emtage, S., Jehn, C.H., Kung, T.T., Mauser, P.J., Murgolo, N.J., and Bodmer, M.W. (1995). Inhibition of pulmonary eosinophilia and hyperreactivity by antibodies to interleukin-5. Int Arch Allergy Immunol 107, 321-322. Elnakat, H., and Ratnam, M. (2004). Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56, 1067-1084. Elser, B., Lohoff, M., Kock, S., Giaisi, M., Kirchhoff, S., Krammer, P.H., and Li-Weber, M. (2002). IFN-gamma represses IL-4 expression via IRF-1 and IRF-2. Immunity 17, 703-712. Ergun-Longmire, B., Marker, J., Zeidler, A., Rapaport, R., Raskin, P., Bode, B., Schatz, D., Vargas, A., Rogers, D., Schwartz, S., et al. (2004). Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. Ann N Y Acad Sci 1029, 260-277. Faria, A.M., and Weiner, H.L. (2005). Oral tolerance. Immunol Rev 206, 232-259. Field, C.J., Van Aerde, A., Drager, K.L., Goruk, S., and Basu, T. (2006). Dietary folate improves age-related decreases in lymphocyte function. J Nutr Biochem 17, 37-44. Fields, P.E., Kim, S.T., and Flavell, R.A. (2002). Cutting edge: changes in histone acetylation at the IL-4 and IFN-gamma loci accompany Th1/Th2 differentiation. J Immunol 169, 647-650. Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336. Frew, A.J. (2003). 25. Immunotherapy of allergic disease. J Allergy Clin Immunol 111, S712-719. Fukaura, H., Kent, S.C., Pietrusewicz, M.J., Khoury, S.J., Weiner, H.L., and Hafler, D.A. (1996). Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 98, 70-77. Gajiwala, K.S., and Burley, S.K. (2000). Winged helix proteins. Curr Opin Struct Biol 10, 110-116. Garside, P., Steel, M., Worthey, E.A., Kewin, P.J., Howie, S.E., Harrison, D.J., Bishop, D., and Mowat, A.M. (1996). Lymphocytes from orally tolerized mice display enhanced susceptibility to death by apoptosis when cultured in the absence of antigen in vitro. Am J Pathol 149, 1971-1979. Gebhardt, B.M., and Newberne, P.M. (1974). Nutrition and immunological responsiveness. T-cell function in the offspring of lipotrope and protein-deficient rats. Immunology 26, 489-495. Gorman, S., Kuritzky, L.A., Judge, M.A., Dixon, K.M., McGlade, J.P., Mason, R.S., Finlay-Jones, J.J., and Hart, P.H. (2007). Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J Immunol 179, 6273-6283. Green, R., and Miller, J.W. (1999). Folate deficiency beyond megaloblastic anemia: hyperhomocysteinemia and other manifestations of dysfunctional folate status. Semin Hematol 36, 47-64. Griffin, M.D., Xing, N., and Kumar, R. (2003). Vitamin D and its analogs as regulators of immune activation and antigen presentation. Annu Rev Nutr 23, 117-145. Grogan, J.L., Mohrs, M., Harmon, B., Lacy, D.A., Sedat, J.W., and Locksley, R.M. (2001). Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205-215. Grunig, G., Corry, D.B., Leach, M.W., Seymour, B.W., Kurup, V.P., and Rennick, D.M. (1997). Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J Exp Med 185, 1089-1099. Gutgemann, I., Fahrer, A.M., Altman, J.D., Davis, M.M., and Chien, Y.H. (1998). Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 8, 667-673. Hancock, W.W., Polanski, M., Zhang, J., Blogg, N., and Weiner, H.L. (1995). Suppression of insulitis in non-obese diabetic (NOD) mice by oral insulin administration is associated with selective expression of interleukin-4 and -10, transforming growth factor-beta, and prostaglandin-E. Am J Pathol 147, 1193-1199. Hawrylowicz, C.M., and O'Garra, A. (2005). Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5, 271-283. Hirahara, K., Hisatsune, T., Nishijima, K., Kato, H., Shiho, O., and Kaminogawa, S. (1995). CD4+ T cells anergized by high dose feeding establish oral tolerance to antibody responses when transferred in SCID and nude mice. J Immunol 154, 6238-6245. Hoffjan, S., and Ober, C. (2002). Present status on the genetic studies of asthma. Curr Opin Immunol 14, 709-717. Holgate, S.T., and Broide, D. (2003). New targets for allergic rhinitis--a disease of civilization. Nat Rev Drug Discov 2, 902-914. Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061. Huehn, J., Polansky, J.K., and Hamann, A. (2009). Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9, 83-89. Huang, R.F., Hsu, Y.C., Lin, H.L., and Yang, F.L. (2001). Folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers. J Nutr 131, 33-38. Inada, S., Yoshino, S., Haque, M.A., Ogata, Y., and Kohashi, O. (1997). Clonal anergy is a potent mechanism of oral tolerance in the suppression of acute antigen-induced arthritis in rats by oral administration of the inducing antigen. Cell Immunol 175, 67-75. Infuhr, D., Crameri, R., Lamers, R., and Achatz, G. (2005). Molecular and cellular targets of anti-IgE antibodies. Allergy 60, 977-985. Jain, V.V., Kitagaki, K., and Kline, J.N. (2003). CpG DNA and immunotherapy of allergic airway diseases. Clin Exp Allergy 33, 1330-1335. Javed, N.H., Gienapp, I.E., Cox, K.L., and Whitacre, C.C. (1995). Exquisite peptide specificity of oral tolerance in experimental autoimmune encephalomyelitis. J Immunol 155, 1599-1605. Jutel, M., Pichler, W.J., Skrbic, D., Urwyler, A., Dahinden, C., and Muller, U.R. (1995). Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cell cultures. J Immunol 154, 4187-4194. Kadish, A.S., Doyle, A.T., Steinhauer, E.H., and Ghossein, N.A. (1981). Natural cytotoxicity and interferon production in human cancer: deficient natural killer activity and normal interferon production in patients with advanced disease. J Immunol 127, 1817-1822. Kaji, T., Hachimura, S., Ise, W., and Kaminogawa, S. (2003). Proteome analysis reveals caspase activation in hyporesponsive CD4 T lymphocytes induced in vivo by the oral administration of antigen. J Biol Chem 278, 27836-27843. Kam, K.L., and Hsieh, K.H. (1994). Comparison of three in vitro assays for serum IgE with skin testing in asthmatic children. Ann Allergy 73, 329-336. Kay, A.B., and Klion, A.D. (2004). Anti-interleukin-5 therapy for asthma and hypereosinophilic syndrome. Immunol Allergy Clin North Am 24, 645-666, vii. Kim, C.H. (2008). Regulation of FoxP3 regulatory T cells and Th17 cells by retinoids. Clin Dev Immunol 2008, 416910. Kim, P.H., and Kagnoff, M.F. (1990). Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J Immunol 145, 3773-3778. Kim, Y.I., Hayek, M., Mason, J.B., and Meydani, S.N. (2002). Severe folate deficiency impairs natural killer cell-mediated cytotoxicity in rats. J Nutr 132, 1361-1367. Kwak, H.K., Hansen, C.M., Leklem, J.E., Hardin, K., and Shultz, T.D. (2002). Improved vitamin B-6 status is positively related to lymphocyte proliferation in young women consuming a controlled diet. J Nutr 132, 3308-3313. Lal, G., Zhang, N., van der Touw, W., Ding, Y., Ju, W., Bottinger, E.P., Reid, S.P., Levy, D.E., and Bromberg, J.S. (2009). Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182, 259-273. Larche, M., and Kay, A.B. (2004). Peptide therapy and asthma. Am J Respir Crit Care Med 169, 1331; author reply 1331-1332. Lider, O., Santos, L.M., Lee, C.S., Higgins, P.J., and Weiner, H.L. (1989). Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. II. Suppression of disease and in vitro immune responses is mediated by antigen-specific CD8+ T lymphocytes. J Immunol 142, 748-752. Ludovici, P.P., and Axelrod, A.E. (1951). Circulating antibodies in vitamin-deficiency states; pteroylglutamic acid, niacin-tryptophan, vitamins B12, A, and D deficiencies. Proc Soc Exp Biol Med 77, 526-530. Mantyjarvi, R., Rautiainen, J., and Virtanen, T. (2000). Lipocalins as allergens. Biochim Biophys Acta 1482, 308-317. Marth, T., Strober, W., and Kelsall, B.L. (1996). High dose oral tolerance in ovalbumin TCR-transgenic mice: systemic neutralization of IL-12 augments TGF-beta secretion and T cell apoptosis. J Immunol 157, 2348-2357. McMenamin, C., Pimm, C., McKersey, M., and Holt, P.G. (1994). Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science 265, 1869-1871. Menezes, J.S., Mucida, D.S., Cara, D.C., Alvarez-Leite, J.I., Russo, M., Vaz, N.M., and de Faria, A.M. (2003). Stimulation by food proteins plays a critical role in the maturation of the immune system. Int Immunol 15, 447-455. Meydani, S.N., Han, S.N., and Wu, D. (2005). Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunol Rev 205, 269-284. Miller, A., Lider, O., Roberts, A.B., Sporn, M.B., and Weiner, H.L. (1992). Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A 89, 421-425. Miller, A., Zhang, Z.J., Sobel, R.A., al-Sabbagh, A., and Weiner, H.L. (1993). Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. VI. Suppression of adoptively transferred disease and differential effects of oral vs. intravenous tolerization. J Neuroimmunol 46, 73-82. Munoz, J.J., Arai, H., Bergman, R.K., and Sadowski, P.L. (1981). Biological activities of crystalline pertussigen from Bordetella pertussis. Infect Immun 33, 820-826. Naureckiene, S., Sleat, D.E., Lackland, H., Fensom, A., Vanier, M.T., Wattiaux, R., Jadot, M., and Lobel, P. (2000). Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290, 2298-2301. Nauss, K.M., Connor, A.M., Kavanaugh, A., and Newberne, P.M. (1982a). Alterations in immune function in rats caused by dietary lipotrope deficiency: effect of age. J Nutr 112, 2333-2341. Nauss, K.M., Connor, A.M., and Newberne, P.M. (1982b). Alterations in immune function in rats caused by dietary lipotrope deficiency: effect of culture medium, 2-mercaptoethanol and mitogen dose on the in vitro lymphocyte transformation response. J Nutr 112, 2342-2352. Neurath, M.F., Finotto, S., Fuss, I., Boirivant, M., Galle, P.R., and Strober, W. (2001). Regulation of T-cell apoptosis in inflammatory bowel disease: to die or not to die, that is the mucosal question. Trends Immunol 22, 21-26. Neurath, M.F., Fuss, I., Kelsall, B.L., Presky, D.H., Waegell, W., and Strober, W. (1996). Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med 183, 2605-2616. Norman, P.S., Ohman, J.L., Jr., Long, A.A., Creticos, P.S., Gefter, M.A., Shaked, Z., Wood, R.A., Eggleston, P.A., Hafner, K.B., Rao, P., et al. (1996). Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med 154, 1623-1628. Novak, N., Kraft, S., and Bieber, T. (2001). IgE receptors. Curr Opin Immunol 13, 721-726. Novelli, F., D'Elios, M.M., Bernabei, P., Ozmen, L., Rigamonti, L., Almerigogna, F., Forni, G., and Del Prete, G. (1997). Expression and role in apoptosis of the alpha- and beta-chains of the IFN-gamma receptor on human Th1 and Th2 clones. J Immunol 159, 206-213. Nussenblatt, R.B., Caspi, R.R., Mahdi, R., Chan, C.C., Roberge, F., Lider, O., and Weiner, H.L. (1990). Inhibition of S-antigen induced experimental autoimmune uveoretinitis by oral induction of tolerance with S-antigen. J Immunol 144, 1689-1695. Powrie, F., Carlino, J., Leach, M.W., Mauze, S., and Coffman, R.L. (1996). A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 183, 2669-2674. Robinson, D.S. (2000). Th-2 cytokines in allergic disease. Br Med Bull 56, 956-968. Royer, B., Varadaradjalou, S., Saas, P., Guillosson, J.J., Kantelip, J.P., and Arock, M. (2001). Inhibition of IgE-induced activation of human mast cells by IL-10. Clin Exp Allergy 31, 694-704. Said, H.M. (2004). Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. Annu Rev Physiol 66, 419-446. Salazar, M.D., and Ratnam, M. (2007). The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev 26, 141-152. Scadding, G.K., and Brostoff, J. (1986). Low dose sublingual therapy in patients with allergic rhinitis due to house dust mite. Clin Allergy 16, 483-491. Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D'Agostino, R.B., Wilson, P.W., and Wolf, P.A. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 346, 476-483. Spiegelstein, O., Eudy, J.D., and Finnell, R.H. (2000). Identification of two putative novel folate receptor genes in humans and mouse. Gene 258, 117-125. Steinke, J.W. (2004). Anti-interleukin-4 therapy. Immunol Allergy Clin North Am 24, 599-614, vi. Sun, C.M., Hall, J.A., Blank, R.B., Bouladoux, N., Oukka, M., Mora, J.R., and Belkaid, Y. (2007). Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204, 1775-1785. Takanaski, S., Nonaka, R., Xing, Z., O'Byrne, P., Dolovich, J., and Jordana, M. (1994). Interleukin 10 inhibits lipopolysaccharide-induced survival and cytokine production by human peripheral blood eosinophils. J Exp Med 180, 711-715. Taudorf, E., Laursen, L.C., Lanner, A., Bjorksten, B., Dreborg, S., Soborg, M., and Weeke, B. (1987). Oral immunotherapy in birch pollen hay fever. J Allergy Clin Immunol 80, 153-161. Thompson, H.S., and Staines, N.A. (1986). Gastric administration of type II collagen delays the onset and severity of collagen-induced arthritis in rats. Clin Exp Immunol 64, 581-586. Torgerson, T.R., and Ochs, H.D. (2007). Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol 120, 744-750; quiz 751-742. Trompette, A., Divanovic, S., Visintin, A., Blanchard, C., Hegde, R.S., Madan, R., Thorne, P.S., Wills-Karp, M., Gioannini, T.L., Weiss, J.P., and Karp, C.L. (2009). Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585-588. Wang, Z.Y., Qiao, J., and Link, H. (1993). Suppression of experimental autoimmune myasthenia gravis by oral administration of acetylcholine receptor. J Neuroimmunol 44, 209-214. Wintergerst, E.S., Maggini, S., and Hornig, D.H. (2007). Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51, 301-323. Woolcock, A.J., and Peat, J.K. (1997). Evidence for the increase in asthma worldwide. Ciba Found Symp 206, 122-134; discussion 134-129, 157-129. Yamaguchi, T., Hirota, K., Nagahama, K., Ohkawa, K., Takahashi, T., Nomura, T., and Sakaguchi, S. (2007). Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27, 145-159. Zhang, S., Hunter, D.J., Hankinson, S.E., Giovannucci, E.L., Rosner, B.A., Colditz, G.A., Speizer, F.E., and Willett, W.C. (1999). A prospective study of folate intake and the risk of breast cancer. JAMA 281, 1632-1637. Zhang, Z.J., Davidson, L., Eisenbarth, G., and Weiner, H.L. (1991). Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci U S A 88, 10252-10256. Zhang, Z.Y., and Michael, J.G. (1990). Orally inducible immune unresponsiveness is abrogated by IFN-gamma treatment. J Immunol 144, 4163-4165. Zheng, Y., and Rudensky, A.Y. (2007). Foxp3 in control of the regulatory T cell lineage. Nat Immunol 8, 457-462. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43601 | - |
dc.description.abstract | 口服耐受性是以口服抗原的方式,使個體再度接觸到抗原時傾向產生免疫耐受性,且多數口服蛋白對個體不產生毒性,所誘發的免疫調節具有抗原專一性,具應用到過敏性疾病治療的潛力。本實驗室之前研究發現,給予塵蟎蛋白 (Dp 2)致敏小鼠管餵高劑量 Dp 2 一週,可有效誘發口服耐受性。此外,研究指出,維生素會影響免疫反應,故本實驗欲探討葉酸對口服塵蟎蛋白的氣喘小鼠口服耐受性的影響。
本研究第一階段給予致敏小鼠口服低、高劑量 (100 μg、500 μg) 的 Dp 2 蛋白8 天,再補充 10 倍葉酸 2 至 8 週,探討葉酸對誘發氣喘小鼠口服耐受性所需口服抗原劑量的影響。結果顯示,2 週短期補充葉酸顯著增加小鼠脾臟抗原特異性 IFN-γ 分泌,和增加 MLN IL-2 分泌的趨勢,而顯著抑制 IL-4 的分泌量。8 週的葉酸補充,並追加 3 次致敏後犧牲小鼠,發現葉酸顯著提昇小鼠肺氣管沖洗液 (BALF) 中 IL-2 的含量,且有增加 Peyer’s patch 中 CD4+CD25+Foxp3+ 調節性 T 細胞比例的趨勢,顯示補充 10 倍葉酸有利於口服耐受性的誘發,調控 Dp 2 致敏的氣喘小鼠體內免疫反應更為傾向 Th1 反應。高劑量 Dp 2 雖然增加小鼠血清 IgE 濃度,但顯著降低 BALF 中嗜酸性白血球比例與脾臟 Th2 細胞激素的分泌,因此口服耐受性的誘發仍以 500 μg Dp 2 較可行。 第二階段研究則進一步探討補充葉酸的含量對口服耐受性的影響。給予致敏小鼠口服 500 μg Dp 2 蛋白 8 天,並同時給予含有 0、1、3、5 及 10 倍葉酸的飼料 8 週,同時追加 3 次致敏後犧牲小鼠,分析各項免疫指標。結果顯示,補充 5 倍葉酸顯著降低小鼠脾臟 Th1 細胞激素分泌與特異性增生能力,並降低 MLN 特異性 IL-5 的分泌;補充 10 倍葉酸顯著抑制脾臟細胞 Th1 細胞激素、IL-10、TGF-β 的分泌,也顯著增加脾臟 CD4+CD25+Foxp3+ 調節性 T 細胞比例;缺乏葉酸顯著增加 MLN 抗原特異性 IL-2 分泌,但顯著降低脾臟與 MLN 中 CD4+CD25+Foxp3+、CD4+Foxp3+ 調節性 T 細胞比例與表現強度。 由本實驗結果得知,Dp 2 致敏小鼠氣喘模式中,口服 Dp 2同時補充 10 倍葉酸,有助於誘發口服耐受性。短期的葉酸補充,透過調控腸道免疫組織影響個體免疫反應傾向 Th1;長期葉酸補充,顯著增加脾臟 CD4+CD25+Foxp3+ 調節性 T 細胞比例。葉酸的缺乏則降低 Foxp3 表現強度,不利口服耐受性的維持。 | zh_TW |
dc.description.abstract | Oral tolerance is a state of immunological unresponsiveness to antigen induced by feeding. Most oral antigens are non-toxic proteins, and their ability of inducing antigen-specific immune regulation has made oral tolerance a highly potential treatment to allergy susceptible individuals. We had successfully induced oral tolerance in dust mite protein (Dp 2)-sensitized BALB/c mice with high dose (500 μg) Dp 2 oral administration for 1 week. In this study, we showed the effect of water-soluble vitamin folate on asthma mice oral administered with Dp 2.
To investigate if folate affects the antigen dose to induce oral tolerance, we fed the Dp2-sensitized mice with a diet containing 10 times the folate requirement, and gave the mice high or low dose (500 μg and 100 μg) Dp 2 for 8 days. After 2 weeks of short-term folate supplement, there was a trend toward an increase of mesenteric lymph node (MLN) IL-2 secretion. Also, the short-term folate supplement significantly increased splenocyte-specific IFN-γ secretion, while decreased the MLN IL-4 secretion. Subsequently, after 3 intra-peritoneal boosts, 8 weeks of long-term folate supplement significantly increased bronchoalveolar lavage fluid (BALF) IL-2 and slightly increased CD4+CD25+Foxp3+ regulatory T cell (Treg) percentage in Peyer’s patch. These results indicate that folate plays a role in shifting immune response toward Th1 in asthma mice. Though high dose Dp 2 increased serum IgE level, it significantly reduced eosinophil percentage in BALF and spleen Th2 cytokine secretion. Therefore, oral tolerance induction remained more effective when using high dose of Dp 2. In the following experiment, we demonstrated the effect of folate contents on tolerized mice. Dp 2-sensitized mice were given high dose Dp 2 for 8 days and diets containing 0, 1, 3, 5, 10 times folate for 8 weeks with 3 intra-peritoneal boosts. 5x folate supplement reduced splenocyte Th1 cytokine secretions as well as antigen-specific proliferation and MLN IL-5 secretion. 10x supplement significantly decreased splenocyte Th1 cytokines, IL-10, and TGF-β while increased CD4+CD25+Foxp3+ Treg percentage in spleen. Folate-deficient diet reduced CD4+CD25+Foxp3+ and CD4+Foxp3+ Treg percentage and Foxp3 expression intensity in both spleen and MLN, but increased antigen-specific IL-2 secretion in MLN. Our data show that 10x folate supplement enhances oral tolerance induction by high dose Dp 2 in Dp 2-sensitized mice. Short-term folate supplement tends to shift immune reaction toward Th1 through mucosa while long-term folate supplement increases spleen CD4+CD25+Foxp3+ Treg percentage. Folate deficiency decreses Foxp3 intensity and thus impairs oral tolerance maintenance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:24:10Z (GMT). No. of bitstreams: 1 ntu-98-R96b47307-1.pdf: 10497306 bytes, checksum: 3b5031da854b24038e0c3b2139a7f9f9 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 中文摘要………………………………………………………………………………....I
英文摘要……………………………………………………………………………….III 目錄……………………………………………………………………………………..V 表目錄…………………………………………………………………………………VII 圖目錄…………………………………………………………………………………..X 第一章 序論…………………………………………………………………………….1 第一節 文獻回顧 1 一、過敏性氣喘 1 (一) 簡介與定義 1 (二) 過敏性氣喘的致病機轉 2 (三) 過敏性氣喘的預防與治療方法 3 二、塵蟎過敏原 Dp 2 6 (一) 塵蟎簡介 6 (二) Dp 2 6 三、口服耐受性 7 (一) 簡介與定義 7 (二) 誘發口服耐受性的可能機制 8 (三) 營養素對耐受性的影響 10 (四) 口服耐受性在治療疾病上的應用 11 四、葉酸 13 (一) 葉酸簡介 13 (二) 葉酸與免疫的關係 14 第二節 研究動機 16 第二章 實驗材料與分析方法…………………………………………………………17 第一節 Dp 2 蛋白之生產與純化 17 一、來源 17 二、菌種解凍活化、菌種準備 17 三、蛋白質大量生產 17 四、蛋白質回收與純化 19 五、蛋白質分析 19 第二節 動物實驗設計 23 一、動物飼養流程與實驗分組 23 (一) 飲食高量葉酸對口服不同 Dp2 劑量致敏 BALB/c 小鼠誘發口服耐受性的影響 (實驗一) 23 (二) 飲食葉酸對 Dp2 致敏後誘發口服耐受性 BALB/c 小鼠的影響 (實驗二) 26 二、致敏方式 28 三、氣管內刺激 (intra-tracheal challenge, i.t.) 28 四、口服耐受性的建立 — 餵食 Dp 2 蛋白 29 第三節 動物犧牲及實驗材料收集與分析 29 一、血清樣品的收集 29 二、呼吸道過度反應 (airway hyperresponsiveness, AHR) 測定 30 三、動物犧牲 30 四、肺沖洗液及肺部細胞的取得 31 五、脾臟細胞的取得與培養 31 六、脾臟細胞增生測定 32 七、腸繫膜淋巴結細胞取得與培養 33 八、皮耶氏體細胞的取得與培養 34 九、脾臟、腸繫膜淋巴結、皮耶氏體細胞表面標記與 Foxp3 轉錄因子分析 34 十、血清 Dp2 特異性抗體含量分析 36 十一、血清非特異性抗體含量分析 37 十二、細胞激素分泌量測定 38 第四節 統計分析方法 40 第三章 結果……………………………………………………………………………41 第一節 飲食葉酸對口服不同 Dp 劑量的致敏小鼠口服耐受性誘發的影響 41 一、短期補充葉酸 41 (一) 生長情形與攝食狀況 41 (二) 器官重量、相對器官重量與血清葉酸濃度 41 (三) 血清中 Dp 2 特異性抗體與總抗體含量 41 (四) 脾臟細胞細胞激素分泌量 42 (五)腸繫膜淋巴結細胞細胞激素分泌量 42 (六) 腸繫膜淋巴結細胞及皮耶氏體細胞 Foxp3 轉錄因子的表現 43 二、長期補充葉酸 57 (一) 生長情形與攝食狀況 57 (二) 器官重量與、相對器官重量與血清葉酸濃度 57 (三) 肺氣管沖洗液 (BALF) 中細胞激素含量 57 (四) 肺氣管沖洗液中各種細胞數目 57 (五) 血清中總抗體及 Dp 2 特異性抗體含量 58 (六) 脾臟細胞、腸繫膜淋巴結細胞細胞激素分泌量 58 (七) 腸繫膜淋巴結細胞及皮耶氏體細胞 Foxp3 轉錄因子的表現 58 (八) 脾臟細胞增生能力 59 第二節 飲食葉酸含量對 Dp 2 致敏 BALB/c 小鼠誘發耐受性的影響 76 一、生長情形與攝食狀況 76 二、器官重量與相對器官重量 76 三、血清葉酸濃度 77 四、呼吸道過度反應 (AHR) 77 五、肺氣管沖洗液 (BALF) 中細胞激素含量 77 六、肺氣管沖洗液中各種細胞數目 77 七、血清中 Dp 2 特異性抗體與總抗體含量 78 八、脾臟細胞細胞激素分泌量 78 九、腸繫膜淋巴結細胞細胞激素分泌 79 十、 脾臟細胞、腸繫膜淋巴結細胞及皮耶氏體細胞 Foxp3 轉錄因子的表現 80 十一、脾臟細胞增生能力 80 第四章 討論與總結…………………………………………………………………..101 第一節 討論 101 一、葉酸對小鼠生長的影響 101 二、葉酸對肺部免疫指標的影響 101 三、葉酸對血清抗體的影響 102 四、葉酸對細胞激素分泌的影響 103 五、葉酸對 Foxp3 轉錄因子的影響 104 六、葉酸對脾臟細胞增生的影響 105 第二節 綜合討論 106 一、口服耐受性的誘發與全身性的免疫反應 106 二、葉酸營養狀況對本實驗的影響 107 三、短期與長期補充葉酸的影響比較 108 四、Treg 在的重要性 110 五、蛋白質純化程度對實驗的影響 111 六、小鼠死亡因素的探討及本實驗需改善之處 112 第三節 總結 112 參考文獻.……………………………………………………………...……………...116 表目錄 表 1.1 各種調節性 T 細胞 9 表 2.1 實驗一使用之飼料組成 25 表 2.2 實驗一各組小鼠餵食飼料、致敏、刺激及管餵成分表 25 表 2.3 實驗二使用之飼料組成 27 表 2.4 實驗二各組小鼠餵食飼料、致敏、刺激及管餵成分表 27 表 3.1 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠生長與攝食的影響 44 表 3.2 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠器官重量與相對器官重的影響 45 表 3.3 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠血清 Dp2 特異性抗體含量的影響 47 表 3.4 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠血清總抗體含量的影響 48 表 3.5 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠脾臟細胞 Th1 細胞激素分泌量的影響 49 表 3.6 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠脾臟細胞 Th2 細胞激素分泌量的影響 50 表 3.7 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠脾臟細胞 IL-10、TGF-β 細胞激素分泌量的影響 51 表 3.8 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠腸繫膜淋巴結細胞 Th1 細胞激素分泌量的影響 52 表 3.9 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠腸繫膜淋巴結細胞 Th2 細胞激素分泌量的影響 53 表 3.10 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠腸繫膜淋巴結細胞 IL-10 、TGF-β 細胞激素分泌量的影響 54 表 3.11 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠生長情形與攝食的影響 60 表 3.12 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠器官重量與相對器官重的影響 61 表 3.13 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠 BALF 中細胞激素與趨化激素的影響 63 表 3.14 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠血清 Dp2 特異性抗體含量的影響 65 表 3.15 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠血清總抗體含量的影響 66 表 3.16 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠脾臟細胞 Th1 細胞激素分泌量的影響 67 表 3.17 長期攝食高量 葉酸對口服不同 Dp 2 劑量致敏小鼠脾臟細胞 Th2 細胞激素分泌量的影響 68 表 3.18 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠脾臟細胞 IL-10、TGF-β 細胞激素分泌量的影響 69 表 3.19 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠腸繫膜淋巴結細胞 Th1 細胞激素分泌量的影響 70 表 3.20 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠腸繫膜淋巴結細胞 Th2 細胞激素分泌量的影響 71 表 3.21 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠腸繫膜淋巴結細胞 IL-10、TGF-β 細胞激素分泌量的影響 72 表 3.22 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠攝食的影響 82 表 3.23 飲食葉酸對 Dp 2 致敏後誘發口服耐受性之 BALB/c 小鼠器官重量與相對器官重量的影響 83 表 3.24 飲食葉酸對 Dp 2 致敏後誘發口服耐受性之 BALB/c 小鼠 BALF 中細胞激素與趨化激素含量的影響 86 表 3.25 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠脾臟細胞 Th1 細胞激素分泌量的影響 90 表 3.26 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠脾臟細胞 Th2 細胞激素分泌量的影響 91 表 3.27 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠脾臟細胞 IL-10、TGF-β 細胞激素分泌量的影響 92 表 3.28 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠腸繫膜淋巴結細胞 Th1 細胞激素分泌量的影響 93 表 3.29 飲食葉酸對 Dp 2 致敏後誘口服發耐受性 BALB/c 小鼠腸繫膜淋巴結細胞 Th2 細胞激素分泌量的影響 94 表 3.30 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠腸繫膜淋巴結細胞 IL-10、TGF-β 細胞激素分泌量的影響 95 表 3.31 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠腸繫膜淋巴結細胞激素 Th2/Th1 ratio 的影響 96 表 3.32 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠脾臟細胞增生能力的影響 100 表 4.1 補充葉酸對本實驗小鼠各項免疫指標的影響 114 圖目錄 圖 1.1 (A) 葉酸的結構 (B) 葉酸的其他形式 15 圖 1.2 葉酸涉及的單碳代謝 16 圖 3.1 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠血清葉酸含量的影響 46 圖 3.2 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠腸繫膜淋巴結細胞 Foxp3 轉錄因子表現的影響 55 圖 3.3 短期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠皮耶氏體細胞 Foxp3 轉錄因子表現的影響 56 圖 3.4 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠血清葉酸含量的影響 62 圖 3.5 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠肺沖洗液細胞種類的影響 64 圖 3.6 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠腸繫膜淋巴結細胞 Foxp3 轉錄因子表現的影響 73 圖 3.7 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠皮耶氏體細胞 Foxp3 轉錄因子表現的影響 74 圖 3.8 長期攝食高量葉酸對口服不同 Dp 2 劑量致敏小鼠脾臟細胞增生能力的影響 75 圖3.9 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠生長的影響 81 圖 3.10 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠血清葉酸濃度的影響 84 圖 3.11 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠呼吸道過度反應的影響 85 圖 3.12 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠肺沖洗液細胞種類的影響 87 圖 3.13 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠血清 Dp 2 蛋白特異性抗體含量的影響 88 圖 3.14 飲食葉酸對 Dp 2 致敏後誘發口服耐受性之 BALB/c 小鼠血清總抗體含量的影響 89 圖 3.15 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠脾臟細胞 Foxp3 轉錄因子表現的影響 97 圖 3.16 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠腸繫膜淋巴結細胞 Foxp3 轉錄因子表現的影響 98 圖 3.17 飲食葉酸對 Dp 2 致敏後誘發口服耐受性 BALB/c 小鼠皮耶氏體細胞 Foxp3 轉錄因子表現的影響 99 圖 4.1 本實驗純化之蛋白質的 Western blot 結果 115 | |
dc.language.iso | zh-TW | |
dc.title | 葉酸對塵螨蛋白致敏 BALB/c 小鼠口服耐受性的影響 | zh_TW |
dc.title | Effect of dietary folate supplement on oral tolerance
development in Dp2-sensitized BALB/c mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江伯倫,李昆達,吳文勉,許瑞芬 | |
dc.subject.keyword | 口服耐受性,葉酸,塵螨,蛋白,MLN,Foxp3+調節性T細胞, | zh_TW |
dc.subject.keyword | oral tolerance,folate,Dp 2,MLN,Peyer’s patch,Foxp3+ Treg, | en |
dc.relation.page | 126 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 10.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。