請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43586完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張上鎮 | |
| dc.contributor.author | Fu-Lan Hsu | en |
| dc.contributor.author | 許富蘭 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:23:54Z | - |
| dc.date.available | 2009-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-18 | |
| dc.identifier.citation | 王松永(1980)木材劣化性質之研究(第四報)省產木材之耐候性與耐腐性。臺大與臺電公司合作研究報告 30:1-101。
中華民國國家標準(2000)CNS 6717。木材防腐劑之性能基準及其試驗法。經濟部標檢驗準局。 中華民國國家標準(2000)CNS 14495。木材防腐劑。經濟部標檢驗準局。 周與良、邢來君(1990)真菌學。高等教育出版社。472頁。 周慧明(1991)木材防腐。中國林業出版社。294頁。 張上鎮、吳季玲、王升陽(2000)台灣杉木材的抗腐朽菌成分與活性。台灣林業 26:13-17。 張上鎮、陳品方(2000)精油之抗細菌與抗真菌活性。林產工業 19:275-284。 Abadulla E., T. Tzanov, S. Costa, K. H. Robra, A. Cavaco-Paulo and G. M. Gubitz (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol. 30:3357-3362. American society for testing and materials (2006) Standard test method of evaluating wood preservatives by field tests with stakes. ASTM D1758-6. Philadelphia, PA, USA. American society for testing and materials (2007) Standard test method for wood preservatives by laboratory soil-block cultures. ASTM D-1413. Philadelphia, PA, USA. American wood preserver’s association (1999) Standard method of evaluating wood preservatives by field tests with stakes. AWPA E7-01. Alabama, USA. American wood preserver’s association (1999) Standard field test for evaluation of wood preservatives intended for use category 3B applications exposed, out of ground contact, uncoated ground proximity decay method. AWPA E18-04. Alabama, USA. American wood preserver’s association. (2008) Standard method of wood preservatives by laboratory soil-block cultures. AWPA E10-08. Alabama, USA. American wood preserver’s association (2008) Standard method of evaluating wood preservatives in a soil bed. AWPA E14-07. Alabama, USA. Anonymous (1998) Biocidal products Directive (98/8/EC). Offical Journal of the European Communities L. 123:1-63. Archer, K. (1991) Fundamental studies on the fungus cellar/soil bed. Proceedings of the BWPDA. Banerjee, A. K. and J. F. Levy (1971) Fungal succession in wooden fence posts. Material und Organismen. 6:199-211. Brown, J. (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implication for their antioxidant properties. Biochem. J. 330:1173-1178. Butcher, J. A. (1968) The ecology of fungi infected untreated sapwood of Pinnus radiate, Can. J. Biotechnol. 46:1577-1589. Chang, H. T. and S. T. Chang (2002) Moisture excluding efficiency and dimensional stability of wood improved by acylation. Bioresour. Technol. 85(2): 201-204. Chang, S. T., S. Y. Wang, C. L. Wu, Y. C. Su and Y. H. Kuo (1999) Antifungal compounds in the ethyl acetate soluble fraction of the extractives of Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 53: 487–490. Chang, S. T., S. Y. Wang, C. L. Wu, P. F. Chen and Y. H. Kuo (2000) Comparison of the antifungal activity of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 54: 241-245. Chang, S. T., J. H. Wu, S. Y. Wang, P. L. Kang, N. S. Yang and L. F. Shyur (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 49: 3420-3424. Chen, Y. R., Y. R. Lee, S. Y. Wang, T. S. Cheng, J. F. Shaw and F. H. Chu (2004) Establishment of expressed sequence tags from Taiwania (Taiwania cryptomerioides Hayata) seedling cDNA. Plant Sci. 167: 955-957. Cheng, S. S., L. Y. Liu, Y. R. Hsui and S. T. Chang (2006) Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresour. Technol. 97: 306-312. Chu, F. H., Y. R. Lee, S. J. Chou, T. T. Chang and J. F. Shaw (2008) Isolation and analysis of genes specifically expressed during basidiomatal development in Antrodia cinnamomea by subtractive PCR and cDNA microarray. FEMS Microbiol. Lett. 280: 150-159. Clark, J. W. and T. C. Scheffer (1983) Natural decay resistance of the heartwood of coast redwood Sequoia sempervirens (D. Don) Engl. For. Prod. J. 33:15-20. Clausen, C. A. and V. Yan (2007) Protecting wood from mould, decay, and termites with multi-component biocide systems. Int. Biodeterior. Biodegrad. 59:20-24. Cowling, E. B. (1957) The relative preservative tolerances of 18 wood-destroying fungi. For. Prod. J. 7:355-359. Daniel, G. (2003) Microview of wood under degradation by bacteria and fungi. pp.51-55. In B. Goodell, D. D. Nicholas and T. P. Schultz, eds. Wood Deterioration and Preservation: Advances in Our Changing World. American Chemical Society, Washington, DC. 465pp. DesRochers, P. and G. B. Ouellette (1994) Phaeotheca dimorphospora sp. nov.: description et caractéristiques culturales. Can. J. Bot. 72:808-817. Drysdale, J. A. (1994) Boron treatments for the preservation of wood-a review of efficacy data for fungi and termites. International Research Group Paper IRG/WP 94-30037. Eaton, R. A. and M. D. C. Hale (1993) Natural durability. pp.311-318. In Eaton, R. A. and M. D. C. Hale. eds. Wood Decay, Pests and Protection. Chapman & Hall, New York, USA. 546pp. Enoki, A., M. Takahashi, H. Tanaka and G. Fuse (1985) Degradation of lignin-related compounds and wood components by white-rot and brown-rot fungi. Mokuzai Gakkaishi 31:397-408. Enoki, A., H. Tanaka and G. Fuse (1989) Relationship between degradation of wood and production of H2O2-producing one-electron oxidases in brown-rot fungi. Wood Sci. Technol. 23:1-12. Eriksson, K. E. L., R. A. Blanchette and P. Ander (1990) Biodegradation of cellulose. pp.89-123. In K. E. L. Eriksson, R. A. Blanchette and P. Ander, eds. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer-Verlag, Berlin. 407pp. European standard (1996) Wood preservatives-test method for determining the protective effectiveness against wood destroying basidiomycetes-determination of toxic values. EN113. European standard (1994) Durability of wood and wood-based products- Natural durability of solid wood Part 2. Guide to natural durability and treatability of selected wood species of importance in Europe. EN350-2. Flournoy, D. S., T. K. Kirk and T. L. Highley (1991) Wood decay by brown-rot fungi: Changes in pore structure and cell wall volume. Holzforschung 45:383-388. Freitag, M; J. J. Morrell and A. Bruce (1991) Biological protection of wood: status and prospects. Int. Biodeterior. Biodegrad. 5:1-13. Fuse, G. (1988) On the safety of preservatives against fungi, termites and insects. Mokuzai Gakkaishi 34:709-717. Goodell, B., J. Jellison, J. Liu, G. Daniel, A. Paszczynski, F. Fekete, S. Krishnamurthy, L. Lu and G. Xu (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodeterioration of wood. J. Biotechnol. 53:133-162. Goodell, B., D. D. Nicholas and T. P. Schultz (2003) Introduction to wood deterioration and preservation. pp.2-9. In B. Goodell, D. D. Nicholas and T. P. Schultz, eds. Wood Deterioration and Preservation: Advances in Our Changing World. American Chemical Society, Washington, DC. 465pp. Griffin, D. H. (1993) Growth. pp.103-104. In D. H. Griffin, ed. Fungal Physioloy. Wiley-Liss, Inc. New York, USA. 458pp. Hammel, K. E., A. N. Kapich, K. A. Jensen and Z. C. Ryan (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 4:445-453. Hart, J. H (1989) The role of wood exudates and extractives in protecting wood from decay. pp.861-878. In J. W. Rowe, ed. Natural Products of Woody Plants. Springer- Verlag Co., Berlin. 1243pp. Hawley, L. F., L. C. Fleck and C. A. Richards (1924) The relation between natural durability and chemical composition in wood. Ind. Eng. Chem. 16:699-706. Haygreen, J. G. and J. L. Bowyer (1996) Wood and water. pp. 155-175. In J.G. Haygreen and J.L. Bowyer, eds. Forest Products and Wood Science. Iowa State University Press, USA. 495pp. Hedley, M. E (1980) Comparison of decay rates of preservative- treated stakes in field and fungus cellar tests. International Research Group Paper IRG/WP 80-2135. Hyde, S. M. and P. M. Wood (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(Ⅲ) reduction by cellobiose dehydrogenase and Fe (Ⅱ) oxidation at a distance from the hyphae. Microbiology 143:259-266. Illman, B. S., and T. L. Highley (1989) Decomposition of wood by brown-rot fungi. pp. 465-484. In: C. E. O’Rear and G. C. Llewellyn eds. Biodeterioration Research 2. Plenum Press, New York. Hu, W., W. Wu, C. F. Verschraegen, L. Chen, L. Mao, S. C. J. Yeung, A. P. Kudelka, R. S. Freedman and J. J. Kavanagh (2003) Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics 3:1904-1911. Japanese industrial standard (2004) Test methods for determining the effectiveness of wood preservatives and their performance reguirements. JIS K1571. Tokyo, Japan. Jellison, J., J. Connolly, B. Goodell, B. Doyle, B. Illman, F. Fekete and A. Ostrofsky (1997) The role of cations in the biodegradation of wood by the brown rot fungi. Int. Biodeterior. Biodegrad. 39:165-179. Jolly, C. and R. I. Morimoto (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. National Cancer Institute 92:1564-1572. Kai, Y. (1991) Chemistry of extractives. pp.215-255. In D. N. S. Hon and N. Shiraishi, eds. Wood and Cellulosic Chemistry. Marcell Dekker Inc., New York. 1020pp. Kamdem, D. P., A. Pizzi and A. Jermannaud (2002) Durability of heat-treated wood. Holz Als Roh-und Werkst. 60:1-6. Katz, S. A. and H. Salem (2005) Chemistry and toxicology of building timbers pressure-treated with chromated copper arsenate: a review. J. Appl. Toxicol. 25:1-7. Kerem, Z., K. A. Jensen and K. E. Hammel (1999) Biodegradative mechanism of the brown rot basidomycete Gloephyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446:49-54. Kirk, T. K (1975) Effects of a brown-rot fungus, Lenzites frabea, on lignin in spruce wood. Holzforschung 29 :99-107. Kirk, T. K (1984) Biological decomposition of solid wood. pp.455-483. In R. M. Rowell, eds. The Chemistry of Solid Wood. American Chemical Society. Washington. D.C. 614pp. Kishino, M., H. Ohi and A. Yamaguchi (1995) Characteristics of methanol extractives from Chengal wood and their antifungal properties. Mokuzai Gakkaishi 41:444-447. Klocke, J. A. and B. G. Chan (1982) Effects of cotton condensed tannin on feeding and digestion in the cotton pest Heliothis zea. J. Insect Physiol. 28:911-915. Ko, W. H., J. T. Kilejunas and J. T. Shimoka (1976) Effect of agar on inhibition of spore germination by chemicals. Phytopathology 66:363-366. Koenigs, J. W. (1974) Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basisdiomycetes. Wood Fiber Sci. 6:66-80. Kondo, R. and H. Imamura (1986) Antifungal compounds in heartwood extractives of hinoki(Chamaecyparis obtusa Endl.). Mokuzai Gakkaishi 32:213-217. Kubo, I., P. Xiao and K. Fujita (2001) Antifungal activity of octyl gallate: Structural criteria and mode of action. Bioorg. Med. Chem. Lett. 11:347-350. Kubo, I., P. Xiao and K. Fujita (2002) Anti-MRSA activity of alkyl gallates. Bioorg. Med. Chem. Lett. 12:113-116. Leonowicz, A., A. Matuszewska, J. Luterek, D. Ziehenhagen, M. Wojtas-Wasilewska, N. S. Cho, M. Hofrichter and J. Rogalski (1999) Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27:175-185. Lin, W. D., Y. C. Chen, J. M. Ho and C. D. Hsiao (2006) GOBU: Toward an integration interface for biological objects. J. Inf. Sci. Eng 22:19-29. Mabicka, A., S. Dumarcy, N. Rouhier, M. Linder and J. P. Jacquot (2005) Synergistic wood preservatives involving EDTA, irganox 1076 and 2-hydroxypyridine- N-oxide. Int. Biodeterior. Biodegrad. 55:203-211. Martinez-Inigo, M. J., P. Immerzeel, A. Gutierrez, J. C. del Rio and R. Sierra-Alvzrez (1999) Biodegradability of extractives in sapwood and heartwood from Scots pine by sapstain and white rot fungi. Holzforschung 53:247-252. Merrill, W. and D. W. French (1966) Colonization of wood by soil fungi. Phytopathology56:301-303. Micklewright, J. T. (1998) Wood Preservation Statistics. 1997. Am. Wood Pres. Assoc.: Granbury, TX. Milagres, A. M. F., V. Arantes, C. L. Medeiros and A. Machuca (2002) Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzyme Microb. Technol. 4:562-565. Morin, C., P. Tanguay, C. Breuil, D. Q. Yang and L. Bernier (2006) Bioprotection of spruce logs against sapstain using an albino strain of Ceratocystis resinifera. Phytopathology 96:526-533. Morita, S. I., T. Hidaka and M. Yatagai (1997) Antifungal compounds of the extractives of Yakusugi (Crypromeria japonica D. Don). Wood Preservation. 23:11-19. Nault, J. (1988) Radial distribution of thujaplicins in old growth and second growth of western red cedar (Thuja plicata Donn). Wood Sci. Technol. 22:73-80. Onuorah, E. O. (2000) The wood preservative potentials of heartwood extracts of Milicia excelsa and Erythrophleum suaveolens. Bioresour. Technol. 75:171-173. Paszczynski, A., R. Crawford, D. Funk and B. Goodell (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl. Environ. Microbiol. 65:674-679. Peylo, A. and H. Willeitner (1997) Leaching of boron more than 3 years after exposure. International Research Group Paper IRG/WP 97-30143. Phillips, M. A. and R. B. Croteau (1999) Resin-based defenses in codifers. Trends Plant Sci. 4:184-190. Pietta, P. G (2000) Flavonoids as antioxidant. J. Nat. Prod. 63:1035-1042. Pilotti, C. A., R. Kondo, K. Shimizu and K. Sakai (1995) An examination of the anti-fungal components in the heartwood extracts of Pterocarpus indicus. Mokuzai Gakkaishi 41:593-597. Pizzi, A., A. W. Baecker (1996) A new boron fixation mechanism for non-toxic wood preservatives. Holzforschung 50(6):507-510. Porandowski, J., P. A. Cooper, M. Kaldas and Y. T. Ung (1998) Evolution of CO2 during the fixation of chromium containing wood preservatives on wood. Wood Sci. Technol. 32:15-24. Preston, A. F. (2000) Wood preservation: trends of today that will influence the industry tomorrow. For. Prod. J. 50:13-19. Reese, E. T., R. G. H. Siu and H. S. Levinson (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59:485-497. Scheffer, T. C. and E. B. Cowling (1966) Nature resistance of wood to microbial deterioration. Annu. Rev. Phytopathol. 4:147-170. Schmidt, E. L. and Y. L. Lin (1992) Basidiospore germination threshold against borate in-vitro may vary between liquid and agar media. International Research Group Paper IRG/WP 92-2405. Schultz, T. P., T. F. Hubbard, J. L. Jin, T. H. Fisher and D. D. Nicholas (1990) Role of stilbene in the natural durability of wood: Fungicidal structure-activity relationships. Phytochemistry 29:1501-1507. Schultz, T. P., W. B. Harms, T. H. Fisher, K. D. McMurtrey, J. Minn and D. D. Nicholas (1995) Durability of angisperm heartwood: The importance of extractives. Holzforschung 49: 29-34. Schultz, T. P. and D. D. Nicholas (2000) Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54:47-52. Schultz, T. P. and D. D. Nicholas (2002) Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators. Phytochemistry 61:555-560. Shimada, M. and T. Higuchi (1991) Microbial, enzymatic, and biomimetic degradation of lignin. pp.557-619. In D. N. S. Hon and N. Shiraishi, eds. Wood and Cellulosic Chemistry. Marcel Dekker Inc., New York. 1020pp. Smith, A. L., C. L. Campbell, D. B. Walker and J. W. Hanover (1989) Extracts from black locust as wood preservatives: extraction of decay resistance from black locust heartwood. Holzforschung 43:293-296. Strippoli, V., F. D. D’Auria, M. Tecca, A. Callari and G. Simonetti (2000) Propyl gallate increases in vitro antifungal imidazole against Candida albicans. Int. J. Antimicrob. Agents 16:73-76. Tanaka, H., S. Itakura and A. Enoki. (1999a) Hydroxyl radical generation and wood degradation by a white-rot fungus. Holzforschung 3:21-28. Tanaka, H., S. Itakura and A. Enoki (1999b) Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J. Biotechnol. 75:57-70. Thevenon, M. F., A. Pizzi and J. P. Haluk (1997) Non-toxic albumin and soja protein borates as ground-contact wood preservatives. Holz Als Roh-und Werkst. 55:293-296. Thevenon, M. F., A. Pizzi and J. P. Haluk (1998) One-step tannin fixation of non-toxic protein borates wood preservatives. Holz Als Roh-und Werkst. 56:90. Thevenon, M. F., N. Amusant, C. Moretti, B. Richard, E. Prost and J. M. Nuzillard (2007) Chemical compounds from Eperua falcate and Eperua grandiflora heartwood and their biological activisties againt wood destroying fungus (Coriolus versicolor). Holz Als Roh-und Werkst. 65:23-28. Uozaki, M., H. Yamasaki, Y. Katsuyama, M. Higuchi, T. Higuti and A. H. Koyama (2007) Antiviral effect of octyl gallate against DNA and RNA viruses. Antiviral Res. 73:85-91. Varner, R. W. and R. L. Krause (1951) Agar-block and soil-block methods for testing wood preservatives. Ind. Eng. Chem. 43:1102-1107. Voda, K., B. Boh, M. Vrtacnik and F. Pohleven (2003) Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Int. Biodeterior. Biodegrad. 51:51-59. Voda, K., B. Boh and M. Vrtačnik (2004) A quantitative structure-antifungal activity relationship study of oxygenated aromatic essential oil compounds using data structuring and PLS regression analysis. J. Mol. Model. 10:76-84. Wang, S. Y., P. F. Chen and S. T. Chang (2005) Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresour. Technol. 96:813-818. Wang, X. M., H. Wan, D. Q. Yang and J. Shen (2006) Impact of aspen log storage with and without protection on OSB performance. Holz Als Roh-und Werkst. 64:377-384. Weaver, R. F. (2008) Post transcriptional events. pp.400-483. In R. F. Weaver, ed. Molecular biology. McGraw-Hill, New York. 890pp. Weiland, J. J. and R. Guyonnet (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Als Roh-und Werkst. 61:216-220. Wilcox, W. W (1993) Future protection of wood in structures. pp.131-134. In Wood Preservative in the ’90s and Beyond, eds. Forest Products Society, Madison. 256pp. Xu, G. and B. Goodell (2001) Mechanisms of wood degradation by brown-rot fungi:chelator-mediated cellulose degradation and binding of iron by cellulose. J. Biotechnol. 87:43-57. Yang, D. Q., X. M. Wang and H. Wan (2007a) Biological protection of logs with Gliocladium roseum against biodegradation for panel manufacturing. Biocontrol 52:559-571. Yang, D. Q., X. M. Wang and H. Wan (2007b) Biological treatment of aspen strands to improve mold resistance and reduce resin consumption of strand boards. For. Prod. J. 57:58-62. Zabel, R. A. and J. J. Morrell (1992) Natural decay resistance. pp.400-411. In R. A. Zabel and J. J. Morrell, eds. Wood Microbiology: Decay and its Prevention. Academic Press, San Diego. 476pp. Zabielska-Matejuk J., E. Urbanik and J. Pernak (2004) New bis-quaternary ammonium and bis-imidazolium chloride wood preservatives. Holzforschung 58:292-299. Zainal, A. S (1976) The effect of a change in cell-wall constituents on dacay of Scots pine by a soft-rot fungus. Material and Organism. 11:295-301. Zucker, W. V. (1983) Tannins: Does structure determine function? An ecological perspective. Am. Nat. 121:335-365. COST, Website:http://www.cost.esf.org. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43586 | - |
| dc.description.abstract | 本論文旨在探討低毒性之抗氧化劑及金屬螯合劑對木材耐腐朽性之影響。首先以瓊脂平板試驗法及液態試驗法篩選商業用抗氧化劑及金屬螯合劑等之抑菌活性,結果顯示除了沒食子酸辛酯(Octyl gallate)可以抑制多種木材腐朽菌外,大多數藥劑並不具抑菌活性。沒食子酸辛酯之抑菌活性主要來自其適當比例的疏水端與親水端之結構,與其良好的自由基捕捉能力無關。透過DNA及RNA電泳分析及抑制扣除雜合技術(Suppression substraction hybridization, SSH)之應用,推測沒食子酸辛酯因干擾真菌細胞膜,影響細胞膜上諸多蛋白質之功能及流動性,致使DNA及RNA結構破壞。此外,與真菌生理基本機能有關之反應如細胞膜上離子的結合與傳輸、糖類代謝、能量產生與細胞內訊息傳遞等及對抗外界壓力或解毒等之自救能力,皆因添加沒食子酸辛酯受到抑制。
後續分別以土壤木塊試驗(ASTM D1413-07)及土床試驗(AWPA E14-07)評估不同配比之抗氧化劑及金屬螯合劑處理材於單純菌種及與土壤接觸動態變化菌種環境下之耐腐朽性能。由土壤木塊試驗結果顯示,木材單獨含浸5%之沒食子酸丙酯(Propyl gallate)、沒食子酸辛酯或金屬螯合劑EDTA(Ethylenediaminetetraacetic acid)等皆獲得良好且長效之耐腐朽效果,顯示藉由添加不具殺菌活性之抗氧化劑或金屬螯合劑,降低木材內自由基及金屬之含量,進而阻礙真菌對木材的非酵素降解機制而達保護木材的效果是可行的。其中,沒食子酸辛酯與鐵布可唑(Tebuconazole)或肉桂醛(Cinnamaldehyde)混用,更產生促進效應,此意謂在應用上藉由添加沒食子酸辛酯可以降低鐵布可唑或肉桂醛等殺菌劑的使用量。此外,由土床試驗結果顯示,抗氧化劑如沒食子酸丙酯、沒食子酸辛酯、沒食子酸十六酯(Hexadecyl gallate)、BHT(Butylated hydroxytoluene)及抗壞血酸(Ascrobic acid)等仍具一定保護木材的效果,唯效果不如土壤木塊試驗,推測係處理材在複雜微生物之土床環境可能遭遇到自由基以外的降解模式所致;而金屬螯合劑EDTA處理材在與土壤接觸的過程,則因藥劑大量流失而失去保護木材的效果。 傳統木材保存藥劑往往以毒殺方式保護木材,但同時其毒性對其他生物及環境亦造成相當之危害與負擔。本研究證實藉由阻斷腐朽菌降解木材所涉及之氧化路徑,選擇以非毒殺機制之低毒性化學藥劑應用在木材保存藥劑之研發是可行的,此外抗氧化劑或金屬螯合劑尚具有安全且低成本等優點,因此極有潛力作為室內或不與土壤接觸之環保型木材保存藥劑或添加劑。 | zh_TW |
| dc.description.abstract | The objective of this research was to evaluate the effects of antioxidant and metal chelator on the fungal decay resistance of wood. Antifungal activity was screened by agar plate test and broth test. Octyl gallate was found to possess wide antifungal spectrum, while most of antioxidants and metal chelator showed weak or no antifungal activity. Antifungal activity of octyl gallate was related to its hydrophobic/hydrophilic structure but not from its high free radical scavenging activity. Results from DNA and RNA electrophoresis and suppression substraction hybridization suggested that octyl gallate interfered with the surfaces of the membrane of fungal cell leading to the disorder of protein, degradation of DNA and RNA. Besides, gene related to fungal basic physiology such as ion channel activity on membrane, carbohydrate metabolic process, energy production, signal transduction, response to stress, and detoxification were all inhibited.
Fungal decay resistance of the treated wood was evaluated according to soil block test (ASTM D1413-07) and soil bed test (AWPA E14-07). Results from pure cultured soil block test revealed that deterioration of wood caused by decay fungi (Gloeophyllum trabeum and Trametes versicolor) could be effectively reduced by impregnation of propyl gallate, octyl gallate, and EDTA, indicating that non-fungacidal antioxidants and metal chelator endowed wood with good resistance against wood rot fungi by reducing the amount of free radicals and metal in wood. Besides, octyl gallate also showed enhanced efficacy when it co-added with fungicides like tebuconazole. Results from soil bed test revealed that wood treated with antioxidants such as propyl gallate, octyl gallate, hexadecyl gallate, butylated hydroxytoluene, and ascrobic acid could alleviate fungal attack to some extent even most of them have no antifungal activity. EDTA showed no protective effect in siol bed test which may be ascribed to its high leachability. A major problem of traditional wood preservatives is that they pose a serious threat to the environment. According to the above results, this study verified that in addition to fungicidal activity of traditional wood preservatives, non-biocidal properties like free radical scavenging activity or metal chelating activity might provide protection for wood by blocking one of the pathways of fungal attack. In addition, antioxidant and metal chelator possess the advantages like safety and low-cost, they could be a feasible alternative or additives to develop environmentally-benign wood preservatives for sheltered or non-ground-contact purposes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:23:54Z (GMT). No. of bitstreams: 1 ntu-98-D92625004-1.pdf: 940242 bytes, checksum: fb644c55b8b1160f5fc015676c511149 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄 I
表目錄 III 圖目錄 V 摘要 VII Abstract IX 第一章 序言 1 第二章 文獻回顧 3 第一節 木材腐朽及保存 3 一、木材劣化 3 二、改善木材耐腐朽性之方法 3 三、木材保存藥劑之種類 7 四、木材保存藥劑之發展趨勢 10 第二節 木材之天然耐腐朽性 12 一、天然耐腐朽定義及試驗法 12 二、影響木材天然耐腐朽性因子 18 第三節 木材腐朽菌的種類及降解模式 23 一、木材腐朽菌種類 23 二、木材腐朽菌對木材之酵素降解系統 26 三、木材腐朽菌對木材之非酵素降解系統 28 第四節 木材保存藥劑之篩選與評估方法 30 一、抗真菌活性試驗方法 30 二、木材保存藥劑效能評估法 31 三、藥劑作用機制之探討 34 第三章 材料與方法 35 第一節 試驗材料 35 一、樹種 35 二、菌株 35 三、培養基 35 四、化學試藥 36 第二節 試驗方法 36 一、藥劑基本性質試驗 36 二、藥劑抑菌活性試驗 37 三、以基因表現探討抑菌機制 38 四、木材保存藥劑之效能評估 41 第四章 結果與討論 45 第一節 藥劑之基本性質 45 一、DPPH自由基捕捉能力 45 二、金屬螯合能力 46 第二節 藥劑之抑菌活性 47 一、單獨藥劑之抑菌活性 47 二、烷基鏈長對抑菌活性的影響 48 三、藥劑抑菌之廣效性 54 四、混合藥劑之抑菌效果 55 第三節 藥劑之抑菌機制 56 一、Genomic DNA電泳分析 56 二、RNA電泳分析 57 三、抑制扣除雜合分析 58 第四節 藥劑之木材保存效能 67 一、土壤木塊試驗 67 二、土床試驗 75 第五章 結論 81 第六章 參考文獻 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 金屬螯合劑 | zh_TW |
| dc.subject | 瓊脂平板試驗法 | zh_TW |
| dc.subject | 抗氧化劑 | zh_TW |
| dc.subject | 土床試驗 | zh_TW |
| dc.subject | 土壤木塊試驗 | zh_TW |
| dc.subject | 抑制扣除雜合技術 | zh_TW |
| dc.subject | 木材保存藥劑 | zh_TW |
| dc.subject | 木材腐朽菌 | zh_TW |
| dc.subject | Metal chelator | en |
| dc.subject | Agar plate test | en |
| dc.subject | Antioxidant | en |
| dc.subject | Wood rot fungi | en |
| dc.subject | Wood preservatives | en |
| dc.subject | Suppression substraction hybridization | en |
| dc.subject | Soil block test | en |
| dc.subject | Soil bed test | en |
| dc.title | 抗氧化劑及金屬螯合劑對木材耐腐朽性之影響 | zh_TW |
| dc.title | Effects of Antioxidant and Metal Chelator on
the Fungal Decay Resistance of Wood | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 謝瑞忠,蘇裕昌,王升陽,藍浩繁,李鴻麟,王松永,曲芳華 | |
| dc.subject.keyword | 瓊脂平板試驗法,抗氧化劑,金屬螯合劑,土床試驗,土壤木塊試驗,抑制扣除雜合技術,木材保存藥劑,木材腐朽菌, | zh_TW |
| dc.subject.keyword | Agar plate test,Antioxidant,Metal chelator,Soil bed test,Soil block test,Suppression substraction hybridization,Wood preservatives,Wood rot fungi, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 918.21 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
