請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43576
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃良得(Lean-Teik Ng) | |
dc.contributor.author | Shao-Hua Huang | en |
dc.contributor.author | 黃紹華 | zh_TW |
dc.date.accessioned | 2021-06-15T02:23:43Z | - |
dc.date.available | 2012-08-22 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-17 | |
dc.identifier.citation | Abdel-Aal, E.S.M., J.C. Young, and I. Rabalski. 2006. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry 54:4696-4704.
Abidi, S.L. 1999. Reversed-phase retention characteristics of tocotrienol antioxidants. Journal of Chromatography A 844:67-75. Abidi, S.L., and T.L. Mounts. 1996. Normal phase high-performance liquid chromatography of tocopherols on polar phases. Journal of Liquid Chromatography and Related Technologies 19:509-520. Abidi, S.L., and T.L. Mounts. 1997. Reversed-phase high-performance liquid chromatographic separations of tocopherols. Journal of Chromatography A 782:25-32. Adom, K.K., M.E. Sorrells, and R.H. Liu. 2003. Phytochemical profiles and antioxidant activity of wheat varieties. Journal of Agricultural and Food Chemistry 51:7825-7834. Afinisha Deepam, L.S., D.R. Soban Kumar, A. Sundaresan, and C. Arumughan. 2007. A new method for simultaneous estimation of unsaponifiable constituents of rice bran oil using HPTLC. Journal of Separation Science 30:2786-2793. Aguilar-Garcia, C., G. Gavino, M. Baragano-Mosqueda, P. Hevia, and V.C. Gavino. 2007. Correlation of tocopherol, tocotrienol, γ-oryzanol and total polyphenol content in rice bran with different antioxidant capacity assays. Food Chemistry 102:1228-1232. Amaral, J.S., S. Casal, D. Torres, R.M. Seabra, and B.P.P. Oliveira. 2005. Simultaneous determination of tocopherols and tocotrienols in hazelnuts by a normal phase liquid chromatographic method. Analytical Sciences 21:1545-1548. Andersson, S.C., K. Rumpunen, E. Johansson, and M.E. Olsson. 2008. Tocopherols and tocotrienols in sea buckthorn (Hippophae rhamnoides L.) berries during ripening. Journal of Agricultural and Food Chemistry 56:6701-6706. Andlauer, W., and P. Furst. 1998. Antioxidative power of phytochemicals with special reference to cereals. Cereal Food World 43:356-360. Arita, M., Y. Sato, A. Miyata, T. Tanabe, E. Takahashi, H.J. Kayden, H. Arai, and K. Inoue. 1995. Human α-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochemical Journal 306:437-443. Awika, J.M., L. Dykes, L. Gu, L.W. Rooney, and R.L. Prior. 2003. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. Journal of Agricultural and Food Chemistry 51:5516-5521. Balz, M.K., E. Schulte, and H.P. Thier. 1993. Simultaneous determination of α-tocopheryl acetate, tocopherols and tocotrienols by HPLC with fluorescence detection in foods. European Journal of Lipid Science and Technology 95:215-220. Bergman, C.J., and Z. Xu. 2003. Genotype and environment effects on tocopherol, tocotrienol, and γ-oryzanol contents of southern U.S. rice. Cereal Chemistry 80:446-449. Bunzel, M., J. Ralph, J.M. Marita, R.D. Hatfield, and H. Steinhart. 2001. Diferulates as structural components in soluble and insoluble cereal dietary fibre. Journal of the Science of Food and Agriculture 81:653-660. Bunzel, M., E. Allerdings, V. Sinwell, J. Ralph, and H. Steinhart. 2002. Cell wall hydroxycinnamates in wild rice (Zizania aquatica L.) insoluble dietary fibre. European Food Research and Technology 214:482-488. Butsat, S., N. Weerapreeyakul, and S. Siriamornpun. 2009. Changes in phenolic acids and antioxidant activity in thai rice husk at five growth stages during grain development. Journal of Agricultural and Food Chemistry 57:4566-4571. Cahoon, E.B., S.E. Hall, K.G. Ripp, T.S. Ganzke, W.D. Hitz, and S.J. Coughlan. 2003. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnology 21:1082-1087. Chen, M.H., and C.J. Bergman. 2005. A rapid procedure for analysing rice bran tocopherol, tocotrienol and γ-oryzanol contents. Journal of Food Composition and Analysis 18:319-331. Chotimarkorn, C., S. Benjakul, and N. Silalai. 2008. Antioxidant components and properties of five long-grained rice bran extracts from commercial available cultivars in Thailand. Food Chemistry 111:636-641. Choudhury, N.H., and B.O. Juliano. 1980. Lipids in developing and mature rice grain. Phytochemistry 19:1063-1069. Cicero, A.F.G., and A. Gaddi. 2001. Rice bran oil and γ-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytotherapy Research 15:277-289. Cunha, S.C., J.S. Amaral, J.O. Fernandes, and M.B.P.P. Oliveira. 2006. Quantification of tocopherols and tocotrienols in Portuguese olive oils using HPLC with three different detection systems. Journal of Agricultural and Food Chemistry 54:3351-3356. Dormann, P. 2007. Functional diversity of tocochromanols in plants. Planta 225:269-276. Ehlting, J., D. Buttner, Q. Wang, C.J. Douglas, I.E. Somssich, and E. Kombrink. 1999. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant Journal 19:9-20. Fang, N., S. Yu, and T.M. Badger. 2003. Characterization of triterpene alcohol and sterol ferulates in rice bran using LC-MS/MS. Journal of Agricultural and Food Chemistry 51:3260-3267. Gerhardt, A.L., and N.B. Gallo. 1998. Full-fat rice bran and oat bran similarly reduce hypercholesterolemia in humans. Journal of Nutrition 128:865-869. Goffman, F.D., and C.J. Bergman. 2004. Rice kernel phenolic content and its relationship with antiradical efficiency. Journal of the Science of Food and Agriculture 84:1235-1240. Grusak, M.A., and D. DellaPenna. 1999. Improving the nutrient composition of plants to enhance human nutrition and health. Annual Review of Plant Physiology and Plant Molecular Biology 50:133-161. Harukaze, A., M. Murata, and S. Homma. 1999. Analyses of free and bound phenolics in rice. Food Science and Technology Research 5:74-79. Heinemann, R.J.B., Z. Xu, J.S. Godber, and U.M. Lanfer-Marquez. 2008. Tocopherols, tocotrienols, and γ-oryzanol contents in japonica and indica subspecies of rice (Oryza sativa L.) cultivated in brazil. Cereal Chemistry 85:243-247. Hoa, T.T.C., S. Al-Babili, P. Schaub, I. Potrykus, and P. Beyer. 2003. Golden indica and japonica rice lines amenable to deregulation. Plant Physiology 133:161-169. Hunter, S., and E. Cahoon. 2007. Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids 42:97-108. Iiyama, K., T.B.-T. Lam, and B.A. Stone. 1994. Covalent cross-links in the cell wall. Plant Physiology 104:315-320. Imsanguan, P., A. Roaysubtawee, R. Borirak, S. Pongamphai, S. Douglas, and P.L. Douglas. 2008. Extraction of α-tocopherol and γ-oryzanol from rice bran. LWT - Food Science and Technology 41:1417-1424. Jang, S., and Z. Xu. 2009. Lipophilic and hydrophilic antioxidants and their antioxidant activities in purple rice bran. Journal of Agricultural and Food Chemistry 57:858-862. Jennings, B.H., and C.C. Akoh. 2009. Effectiveness of natural versus synthetic antioxidants in a rice bran oil-based structured lipid. Food Chemistry 114:1456-1461. Juliano, C., M. Cossu, M.C. Alamanni, and L. Piu. 2005. Antioxidant activity of γ-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. International Journal of Pharmaceutics 299:146-154. Kamal-Eldin, A., and L.A. Appelqvist. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671-701. Kamal-Eldin, A., S. Gorgen, J. Pettersson, and A.M. Lampi. 2000. Normal-phase high-performance liquid chromatography of tocopherols and tocotrienols: Comparison of different chromatographic columns. Journal of Chromatography A 881:217-227. Kano, H., Y. Umeda, T. Kasai, T. Sasaki, M. Matsumoto, K. Yamazaki, K. Nagano, H. Arito, and S. Fukushima. 2009. Carcinogenicity studies of 1,4-dioxane administered in drinking-water to rats and mice for 2 years. Food and Chemical Toxicology 47:2776-2784. Kong, S., and J. Lee. 2010. Antioxidants in milling fractions of black rice cultivars. Food Chemistry 120:278-281. Kujala, T.S., J.M. Loponen, K.D. Klika, and K. Pihlaja. 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three Individual compounds. Journal of Agricultural and Food Chemistry 48:5338-5342. Lampi, A.M., T. Nurmi, V. Ollilainen, and V. Piironen. 2008. Tocopherols and tocotrienols in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 56:9716-9721. Leipner, J., Y. Fracheboud, and P. Stamp. 1999. Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environmental and Experimental Botany 42:129-139. Lerma-Garcia, M.J., J.M. Herrero-Martinez, E.F. Simo-Alfonso, C.R.B. Mendonca, and G. Ramis-Ramos. 2009. Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chemistry 115:389-404. Li, G.X., M.J. Lee, A.B. Liu, Z. Yang, Y. Lin, W.J. Shih, and C.S. Yang. 2011. δ-Tocopherol is more active than α- or γ-tocopherol in inhibiting lung tumorigenesis in vivo. Cancer Prevention Research 4:404-413. Li, L., P.R. Shewry, and J.L. Ward. 2008. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 56:9732-9739. Ling, M.T., W.N. Yap, P.N. Chang, H.Y. Han, D.T.W. Lee, Y.C. Wong, and Y.L. Yap. 2008. γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. British Journal of Cancer 99:1832-1841. Lloyd, B.J., T.J. Siebenmorgen, and K.W. Beers. 2000. Effects of commercial processing on antioxidants in rice bran. Cereal Chemistry 77:551-555. McKeehen, J.D., R.H. Busch, and R.G. Fulcher. 1999. Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to fusarium resistance. Journal of Agricultural and Food Chemistry 47:1476-1482. Miller, A., T. Frenzel, H.G. Schmarr, and K.H. Engel. 2003. Coupled liquid chromatography-gas chromatography for the rapid analysis of γ-oryzanol in rice lipids. Journal of Chromatography A 985:403-410. Moongngarm, A., and N. Saetung. 2010. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry 122:782-788. Moran, J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas, and P. Aparicio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta 194:346-352. Muntana, N., and S. Prasong. 2010. Study on total phenolic contents and their antioxidant activities of Thai white, red and black rice bran. Pakistan Journal of Biological Sciences 13:170-174. Nielsen, M.M., and A. Hansen. 2008. Rapid high-performance liquid chromatography determination of tocopherols and tocotrienols in cereals. Cereal Chemistry 85:248-251. Nishiyama, Y., C.S. Yun, F. Matsuda, T. Sasaki, K. Saito, and Y. Tozawa. 2010. Expression of bacterial tyrosine ammonia-lyase creates a novel p-coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. Planta 232:209-218. Nuntanakorn, P., B. Jiang, H. Yang, M. Cervantes-Cervantes, F. Kronenberg, and E.J. Kennelly. 2007. Analysis of polyphenolic compounds and radical scavenging activity of four American Actaea species. Phytochemical Analysis 18:219-228. Packer, L., S.U. Weber, and G. Rimbach. 2001. Molecular aspects of α-tocotrienol antioxidant action and cell signalling. Journal of Nutrition 131:369S-373S. Qiu, Y., Q. Liu, and T. Beta. 2010. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chemistry 121:140-147. Rader, J.I., C.M. Weaver, L. Patrascu, L.H. Ali, and G. Angyal. 1997. α-Tocopherol, total vitamin A and total fat in margarines and margarine-like products. Food Chemistry 58:373-379. Rong, N., L.M. Ausman, and R.J. Nicolosi. 1997. Oryzanol decreases cholesterol absorption and aortic fatty streaks in hamsters. Lipids 32:303-309. Ruperez, F.J., D. Martin, E. Herrera, and C. Barbas. 2001. Chromatographic analysis of α-tocopherol and related compounds in various matrices. Journal of Chromatography A 935:45-69. Sato, Y., K. Hagiwara, H. Arai, and K. Inoue. 1991. Purification and characterization of the α-tocopherol transfer protein from rat liver. FEBS Letters 288:41-45. Schwartz, H., V. Ilainen, V. Pfironen, and M.A. Lampi. 2008. Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. Journal of Food Composition and Analysis 21:152-161. Sen, C.K., S. Khanna, and S. Roy. 2006. Tocotrienols: Vitamin E beyond tocopherols. Life Sciences 78:2088-2098. Sookwong, P., K. Nakagawa, K. Murata, Y. Kojima, and T. Miyazawa. 2006. Quantitation of tocotrienol and tocopherol in various rice brans. Journal of Agricultural and Food Chemistry 55:461-466. Sookwong, P., K. Murata, K. Nakagawa, A. Shibata, T. Kimura, M. Yamaguchi, Y. Kojima, and T. Miyazawa. 2009. Cross-fertilization for enhancing tocotrienol biosynthesis in rice plants and QTL analysis of their F2 progenies. Journal of Agricultural and Food Chemistry 57:4620-4625. Suarez, B., N. Palacios, N. Fraga, and R. Rodriguez. 2005. Liquid chromatographic method for quantifying polyphenols in ciders by direct injection. Journal of Chromatography A 1066:105-110. Suzuki, Y.J., M. Tsuchiya, S.R. Wassall, Y.M. Choo, G. Govil, V.E. Kagan, and L. Packer. 1993. Structural and dynamic membrane properties of α-tocopherol and α-tocotrienol: Implication to the molecular mechanism of their antioxidant potency. Biochemistry 32:10692-10699. Tan, B., and L. Brzuskiewicz. 1989. Separation of tocopherol and tocotrienol isomers using normal-phase and reverse-phase liquid-chromatography. Analytical Biochemistry 180:368-373. Tian, S., K. Nakamura, and H. Kayahara. 2004. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of Agricultural and Food Chemistry 52:4808-4813. Tian, S., K. Nakamura, T. Cui, and H. Kayahara. 2005. High-performance liquid chromatographic determination of phenolic compounds in rice. Journal of Chromatography A 1063:121-128. Vichapong, J., M. Sookserm, V. Srijesdaruk, P. Swatsitang, and S. Srijaranai. 2010. High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT - Food Science and Technology 43:1325-1330. Wang, L.J., R.K. Newman, C.W. Newman, L.L. Jackson, and P.J. Hofer. 1993. Tocotrienol and fatty-acid composition of barley oil and their effects on lipid-metabolism. Plant Foods for Human Nutrition 43:9-17. Wang, X., and P.J. Quinn. 1999. Vitamin E and its function in membranes. Progress in Lipid Research 38:309-336. Ward, J.L., K. Poutanen, K. Gebruers, V. Piironen, A.M. Lampi, L. Nystrom, A.A.M. Andersson, P. Aman, D. Boros, M. Rakszegi, Z. Bedő, and P.R. Shewry. 2008. The HEALTHGRAIN cereal diversity screen: concept, results, and prospects. Journal of Agricultural and Food Chemistry 56:9699-9709. Wefers, H., and H. Sies. 1988. The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. European Journal of Biochemistry 174:353-357. Wilson, T.A., H.M. Idreis, C.M. Taylor, and R.J. Nicolosi. 2002. Whole fat rice bran reduces the development of early aortic atherosclerosis in hypercholesterolemic hamsters compared with wheat bran. Nutrition Research 22:1319-1332. Woisky, R.G., and A. Salatino. 1998. Analysis of propolis: Some parameters and procedures for chemical quality control. Journal of Apicultural Research 37:99-105. Xu, Z., and J.S. Godber. 1999. Purification and identification of components of γ-oryzanol in rice bran oil. Journal of Agricultural and Food Chemistry 47:2724-2728. Yu, S., Z.T. Nehus, T.M. Badger, and N. Fang. 2007. Quantification of vitamin E and γ-oryzanol components in rice germ and bran. Journal of Agricultural and Food Chemistry 55:7308-7313. Zhang, M.W., R.F. Zhang, F.X. Zhang, and R.H. Liu. 2010. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. Journal of Agricultural and Food Chemistry 58:7580-7587. Zhang, M.W., B.J. Guo, R.F. Zhang, J.W. Chi, Z.C. Wei, Z.H. Xu, Y. Zhang, and X.J. Tang. 2006. Separation, purification and identification of antioxidant compositions in black rice. Agricultural Sciences in China 5:431-440. Zhou, Z., K. Robards, S. Helliwell, and C. Blanchard. 2004. The distribution of phenolic acids in rice. Food Chemistry 87:401-406. Zieliński, H., and H. Kozłowska. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry 48:2008-2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43576 | - |
dc.description.abstract | 稻米中含有多種具有生物活性的植物化學成分,如生育醇 (tocopherols, Toc)、生育三烯醇 (tocotrienols, T3)、γ-谷維素 (γ-oryzanol) 以及多酚類成分 (polyphenolics)。這些植物化學成分分布在稻米的不同部位中,並各自有不同的生物活性。本研究的目的為 (1) 針對稻米中的維生素E異構物及γ-谷維素開發一套可以同步分析九種活性成分的方法,及 (2) 選定數種臺灣常見稻米進行生育醇、生育三烯醇、γ-谷維素及多酚類機能性成分含量分析。
本研究成功建立一套藉由正相高效能液相層析法 (NP-HPLC) 定量稻米中八種維生素E異構物及γ-谷維素的方法。使用Inertisil SIL 100A分離管柱,動相溶液由正己烷/異丙醇/乙酸乙酯/醋酸 (97.6:0.8:0.8:0.8, v/v/v/v) 組成,於25分鐘內完全分離九種活性成分。此方法具有良好的再現性及線性決定係數 (r2 > 0.99),八種維生素E異構物的線性濃度範圍介於0.05-10 μg mL-1,而γ-谷維素則介於0.5-500 μg mL-1。此新建立之方法具有可靠的分離結果、分析時間短、及低成本等優點,因此可適用於大量稻米樣品的分析。 國產稻米不同部位中的生育醇、生育三醇及γ-谷維素的分析結果顯示,米糠具有最高濃度的生育醇 (42.5-123.5 mg kg-1)、生育三烯醇 (111.3-191.4 mg kg-1)及γ-谷維素(1728.4-3440.2 mg kg-1)。米糠中的總維生素E含量為糙米中的5.5倍,精白米中的20倍以上,而米糠中的γ-谷維素則是糙米中的5倍之多。稻米中的維生素E主要為γ-T3,共佔總維生素E含量約48.16%,而β-T3之含量為最低,僅佔0.20%。根據不同稻米品種的結果顯示,Japonica比Indica含有更高的生育醇、生育三烯醇及γ-谷維素含量,其中又以有色米種高於非有色米種。結果亦發現不同亞種稻米中維生素E組成有顯著差異,Indica具有較高的γ-T3含量比例,約佔總維生素E含量的54.70%,而Japonica則是具有較高的α-Toc含量比例,約佔總維生素E含量的30.79%。 多酚類分析結果顯示,米糠中的濃度最高,而稻殼中的種類最多。米糠中總酚含量 (TPC; 1.29-14.28 g of GAE kg-1)、總類黃酮含量 (TFC; 1.23-25.83 g of QE kg-1)、阿魏酸 (7.32-67.95 mg kg-1)及香豆酸 (4.64-39.73 mg kg-1)含量皆高於稻米其他部位。根據所分析的稻米品種中,總類黃酮含量皆高於總酚類含量。不同稻米品種結果顯示,Japonica比Indica含有較高濃度的總酚類及總類黃酮類,其中有色米品種之含量更顯著高於非有色米品種,這是因為有色米中含有大量的花青素。稻米中最主要的酚類化合物為阿魏酸及香豆酸,其他有兒茶素、香草酸及咖啡酸等。根據稻米不同部位分析結果發現,阿魏酸主要分布在米糠中,而香豆酸則主要分布在稻殼中。 總之,本研究成功建立一套快速、再現性好及低成本的稻米中九種機能性成分,如生育醇、生育三烯醇及γ-谷維素的分析方法,並依此方法完成二十種國產稻米中的這些機能性成分分析。結果發現,米糠中具有最高濃度的總維生素E、生育醇、生育三烯醇、γ-谷維素及多酚類化合物,同時亦發現Japonica稻米品種普遍上比Indica含有較高的機能性成分,而有色米品種中的這些成分含量普遍比非有色米高。 | zh_TW |
dc.description.abstract | Whole rice contains several bioactive phytochemicals such as tocopherols (Toc), tocotrienols (T3), γ-oryzanol, and polyphenolic compounds. They have been reported to possess different biological activities and are distributed in different grain parts of rice. The objectives of this study were: (i) to develop an improved analytical method for simultaneous quantification of eight vitamin E analogs (α-, β-, γ- and δ-tocopherols and -tocotrienols) and γ-oryzanol in rice, and (ii) to examine the Toc, T3, γ-oryzanol, and polyphenolic contents in different grain parts of selected commercial rice varieties in Taiwan.
A normal phase high performance liquid chromatography (NP-HPLC) was developed to analyze eight vitamin E isomers and γ-oryzanol in rice. A complete separation of all these nine compounds was achieved using an Inertisil SIL 100A column with the isocratic elution comprising of n-hexane/isopropanol/ethyl acetate/ acetic acid (97.6:0.8:0.8:0.8, v/v/v/v) as mobile phase within 25 min. A good reproducibility and a high coefficient of determination (r2 > 0.99) were obtained at concentrations ranging from 0.05-10 μg mL-1 for all vitamin E isomers and 0.5-500 μg mL-1 for γ-oryzanol, suggesting that the newly established method is accurate, fast and inexpensive for routine determinations of tocopherols, tocotrienols and γ-oryzanol in rice samples. Results on the quantification of Toc, T3, γ-oryzanol, polyphenolic contents in the different grain parts of the selected commercial rice varieties showed that rice bran contained the highest levels of phytochemicals, including Toc (42.5-123.5 mg kg-1), T3 (111.3-191.4 mg kg-1), γ-oryzanol (1728.4-3440.2 mg kg-1), total phenolic content (TPC; 1.29-14.28 g of GAE kg-1), total flavonoid content (TFC; 1.23-25.83 g of QE kg-1), ferulic acid (7.32-67.95 mg kg-1), and p-coumaric acid (4.64-39.73 mg kg-1). The level of vitamin E in rice bran was 5.5 times greater than in brown rice and over 20 times higher than in the polished rice, whereas the level of γ-oryzanol in rice bran was 5 times greater than in brown rice. Regardless of the grain parts, the Toc, T3 and γ-oryzanol contents present in the Japonica rice varieties was higher than in the Indica rice varieties, and contents of these compounds were found higher in the colored rice varieties than in the non-colored rice varieties. γ-T3 was the main vitamin E isomer (48.16%) found in all rice varieties, while β-T3 present only in trace amount (0.20%). The Indica rice varieties generally contained a higher proportion of γ-T3, which account for about 54.70% of the total vitamin E content, while the Japonica rice varieties had a higher proportion of α-Toc (about 30.79% of the total vitamin E). The polyphenolic content was present mainly in rice bran and rice husk. All analyzed rice varieties exhibited a higher level of TFC than the TPC. The Japonica rice varieties showed a significantly higher level of TPC and TFC than the Indica rice varieties. The major phenolic constituents present in the selected rice samples were ferulic acid, p-coumaric acid, catechin, vanillic acid and caffeic acid. Regardless of the grain parts, ferulic acid was the most abundant polyphenolic compounds in all rice samples and was mainly distributed in the rice bran, while p-coumaric acid was present mainly in the rice husk. The contents of individual polyphenolic compounds in the red and black rice varieties were higher than the other varieties, it was attributed to the high content of anthocyanin in the colored rice bran. In conclusion, the present study has established a rapid, accurate, reproducible and inexpensive NP-HPLC method for simultaneous determination of nine major bioactive compounds of rice, including four tocopherols (α-, β-, γ- and δ-T), four tocotrienols (α-, β-, γ- and δ-T3) and γ-oryzanol. Studies also showed that the rice bran present the highest content of total vitamin E, Toc, T3, γ-oryzanol, TPC, TFC, and polyphenolic compounds. The content of these phytochemicals in the Japonica rice varieties were generally higher than in the Indica rice varieties, while the colored rice varieties were higher than the non-colored rice varieties. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:23:43Z (GMT). No. of bitstreams: 1 ntu-100-R97623030-1.pdf: 5469294 bytes, checksum: 9228fb3545b6dee3134d86c031e64114 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 摘要 I
Abstract III Content VI Figure content IX Table content X Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1. Tocopherols and tocotrienols 3 2.2. γ-Oryzanol 6 2.3. Characterization and determination of Toc, T3 and γ-oryzanol 8 2.4. The distribution of polyphenolic compounds in rice 11 Chapter 3 An improved high-performance liquid chromatographic method for determination of tocopheols, tocotrienols and γ-oryzanol in rice 13 3.1. Materials and methods 13 3.1.1. Chemicals 13 3.1.2. Standard working solution 13 3.1.3. Chromatographic system 14 3.1.4. Development of analytical method 14 3.1.5. Validation of analytical method 15 3.1.6. Linearity 15 3.1.7. Reproducibility 17 3.1.8. Accuracy 17 3.1.9. Rice sample extraction 18 3.2. Results and discussion 19 3.2.1. Optimization of chromatographic conditions 19 3.2.1a. HPLC system and mobile phase 20 3.2.1b. Column 24 3.2.1c. Extraction procedures 24 3.2.2. Validation of analytical method 25 3.2.2a. Linearity 25 3.2.2b. Reproducibility 28 3.2.2c. Accuracy and recovery 29 3.3. Conclusions 32 Chapter 4 Quantification of tocopherols, tocotrienols and γ-oryzanol contents and their distribution in some commercial rice varieties in Taiwan. 33 4.1. Materials and methods 33 4.1.1. Chemicals 33 4.1.2. Standard working solution 33 4.1.3. Rice samples and sample preparation 34 4.1.4. Extract preparation 36 4.1.5. Chromatographic conditions 36 4.2. Results and discussion 39 4.2.1. The contents of Toc and T3 39 4.2.1a. Variation between cultivars 49 4.2.1b. Variation between grain parts 51 4.2.2. The content of γ-oryzanol 57 4.2.2a. Variation between cultivars 57 4.2.2b. Variation between grain parts 58 4.3. Conclusions 60 Chapter 5 Quantification of polyphenolic contents and bioactive polyphenolic constituents in various rice varieties in Taiwan 61 5.1. Materials and methods 61 5.1.1. Chemicals 61 5.1.2 Standard working solution 61 5.1.3 Rice sample and preparation 61 5.1.4. Extraction of polyphenolic compounds 63 5.1.5. Determination of total phenolic content 63 5.1.6. Determination of total flavonoid content 64 5.1.7. Chromatographic conditions for ployphenolic constituent analysis 64 5.1.8. Statistical analysis 65 5.2. Results and disscussion 67 5.2.1. Total phenolic content 67 5.2.2 Total flavonoid content 70 5.2.3. Polyphenolic compound contents 73 5.3. Conclusions 81 Chapter 6 Overall conclusions 82 References 84 Publications arising from this work 95 | |
dc.language.iso | en | |
dc.title | 臺灣產稻米的機能性成分研究 | zh_TW |
dc.title | Study on the Functional Constituents of Rice Varieties in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鍾仁賜(Ren-Shih Chung),盧虎生,林松洲(Song-Chow Lin) | |
dc.subject.keyword | 正相高效能液相層析,γ-谷維素,多酚類,稻米,生育醇,生育三烯醇, | zh_TW |
dc.subject.keyword | NP-HPLC,γ-Oryzanol,Polyphenolic,Rice,Tocopherols,Tocotrienols, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 5.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。