Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉信宏(Hsin-Hung Yeh)
dc.contributor.authorChao-Jung Wuen
dc.contributor.author吳昭蓉zh_TW
dc.date.accessioned2021-06-15T02:23:07Z-
dc.date.available2016-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-16
dc.identifier.citationAdams, R. J., and Pollard, T. D. 1986. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature 322: 754-6.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. 1990. Basic local alignment search tool. J Mol Biol. 215: 403-410.
Ashburner, M., Ball, C. A., Blake, J. A., Butler, H., Cherry, J. M., Corradi, J., Dolinski, K., Eppig, J. T., Harris, M., Hill, D. P., Lewis, S., Marshall, B., Mungall, C., Reiser, L., Rhee, S., Richardson, J. E., Richter, J., Ringwald, M., Rubin, G. M., Sherlock, G., Yoon, J., and Consortium, G. O. 2001. Creating the gene ontology resource: Design and implementation. Genome Research 11: 1425-1433.
Atkins, D., Hull, R., Wells, B., Roberts, K., Moore, P., and Beachy, R. N. 1991. The Tobacco mosaic virus-30k movement protein in transgenic tobacco plants is localized to plasmodesmata. Journal of General Virology 72: 209-211.
Baluska, F., Cvrckova, F., Kendrick-Jones, J., and Volkmann, D. 2001. Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiology 126: 39-46.
Bauden, F. C. 1956. Plant viruses and virus diseases. Chronica Botanica Co.,Waltham, Mass. pp.282.
Benson, D., Lipman, D. J., and Ostell, J. 1993. Genbank. Nucleic Acids Research 21: 2963-2965.
Boyko, V., Hu, Q., Seemanpillai, M., Ashby, J., and Heinlein, M. 2007. Validation of microtubule-associated Tobacco mosaic virus RNA movement and involvement of microtubule-aligned particle trafficking. Plant Journal 51: 589-603.
Chan, C. S., Guo, L., and Shih, M. C. 2001. Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Molecular Biology 46: 131-41.
Chang, S., Puryear, J., and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116.
Chen, C. E. 2010. Identification of host factors for antiviral targets. Ph. D. thesis published by National Taiwan University, Taipei, Taiwan, pp.185.
Cheung, M. Y., Zeng, N. Y., Tong, S. W., Li, F. W. Y., Zhao, K. J., Zhang, Q., Sun, S. S. M., and Lam, H. M. 2007. Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv.tomato DC3000 in transgenic Arabidopsis thaliana. Journal of Experimental Botany 59: 2903-2903.
Chua, N. H., Zhang, X. R., Henriques, R., Lin, S. S., and Niu, Q. W. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1: 641-646.
Collinge, D. B., Jensen, M. K., Rung, J. H., Gregersen, P. L., Gjetting, T., Fuglsang, A. T., Hansen, M., Joehnk, N., and Lyngkjaer, M. F. 2007. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology 65: 137-150.
Cooper, G. M., and Hausman, R. E. 2007. The cell: a molecular approach. Fourth edition. ASM press, Sunderland, MA 01375 U. S. A. pp.820.
Culver, J. N., Padmanabhan, M. S., Kramer, S. R., and Wang, X. 2008. Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: Reprogramming the auxin response pathway to enhance virus infection. Journal of Virology 82: 2477-2485.
Culver, J. N., Wang, X., and Goregaoker, S. P. 2009. Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. Journal of Virology 83: 9720-9730.
Deom, C. M., Oliver, M. J., and Beachy, R. N. 1987. The 30-kilodalton gene product of Tobacco mosaic virus potentiates virus movement. Science 237: 389-394.
Ding, X. S., Liu, J. Z., Cheng, N. H., Folimonov, A., Hou, Y. M., Bao, Y. M., Katagi, C., Carter, S. A., and Nelson, R. S. 2004. The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Molecular Plant-Microbe Interactions 17: 583-592.
Duval, M., Hsieh, T. F., Kim, S. Y., and Thomas, T. L. 2002. Molecular characterization of AtNAM: a member of the arabidopsis NAC domain superfamily. Plant Molecular Biology 50: 237-248.
Endres, M. W., Gregory, B. D., Gao, Z. H., Foreman, A. W., Mlotshwa, S., Ge, X., Pruss, G. J., Ecker, J. R., Bowman, L. H., and Vance, V. 2010. Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. Plos Pathogens 6: e1000729.
Ernst, H. A., Olsen, A. N., Skriver, K., Larsen, S., and Lo Leggio, L. 2004. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Reports 5: 297-303.
Fehlberg, V., Vieweg, M. F., Dohmann, E. M., Hohnjec, N., Puhler, A., Perlick, A. M., and Kuster, H. 2005. The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. Journal of Experimental Botany 56: 799-806.
Freemont, P. S. 1993. The ring finger - a novel protein-sequence motif related to the zinc-finger. Annals of the New York Academy of Sciences 684: 174-192.
Gallie, D. R. 2002. The 5'-leader of Tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Research 30: 3401-3411.
Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., and Wilson, T. M. A. 1988. Mutational analysis of the Tobacco mosaic virus 5'-leader for altered ability to enhance translation. Nucleic Acids Research 16: 883-893.
Gallie, D. R., and Walbot, V. 1990. RNA pseudoknot domain of Tobacco mosaic virus can functionally substitute for a poly(a) tail in plant and animal cells. Genes & Development 4: 1149-1157.
Geffers, R., Sell, S., Cerff, R., and Hehl, R. 2001. The TATA box and a Myb binding site are essential for anaerobic expression of a maize GapC4 minimal promoter in tobacco. Biochim Biophys Acta 1521: 120-125.
Golem, S., and Culver, J. N. 2003. Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Molecular Plant-Microbe Interactions 16: 681-688.
Grace, M. L., Chandrasekharan, M. B., Hall, T. C., and Crowe, A. J. 2004. Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. Journal of Biological Chemistry 279: 8102-10.
Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., Whitwill, S., and Lydiate, D. 2003. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology 53: 383-397.
Heinlein, M., Padgett, H. S., Gens, J. S., Pickard, B. G., Casper, S. J., Epel, B. L., and Beachy, R. N. 1998. Changing patterns of localization of the Tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10: 1107-1120.
Higo, K., Ugawa, Y., Iwamoto, M., and Higo, H. 1998. PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Research 26: 358-359.
Hirashima, K., and Watanabe, Y. 2001. Tobamovirus replicase coding region is involved in cell-to-cell movement. Journal of Virology 75: 8831-8836.
Hirashima, K., and Watanabe, Y. 2003. RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region. Journal of Virology 77: 12357-12362.
Hirokawa, T., Boon-Chieng, S. & Mitaku, S. 1998. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14: 378-379.
Holmes, D. S., and Quigley, M. 1981. A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114: 193-197.
Huala, E., Dickerman, A. W., Garcia-Hernandez, M., Weems, D., Reiser, L., LaFond, F., Hanley, D., Kiphart, D., Zhuang, M. Z., Huang, W., Mueller, L. A., Bhattacharyya, D., Bhaya, D., Sobral, B. W., Beavis, W., Meinke, D. W., Town, C. D., Somerville, C., and Rhee, S. Y. 2001. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Research 29: 102-105.
Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. 1987. GUS fusions - Beta-Glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO Journal 6: 3901-3907.
Joazeiro, C. A. P., and Weissman, A. M. 2000. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102: 549-552.
Johnson, J. 1968. Phytopathological classics number 7. Phytopathol. Soc., St. Paul, MN, pp.62.
Kikuchi, K., Ueguchi-Tanaka, M., Yoshida, K. T., Nagato, Y., Matsusoka, M., and Hirano, H. Y. 2000. Molecular analysis of the NAC gene family in rice. Molecular and General Genetics 262: 1047-1051.
Lewis, J. D., and Lazarowitz, S. G. 2010. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proceedings of the National Academy of Sciences of the United States of America 107: 2491-2496.
Marathe, R., Guan, Z., Anandalakshmi, R., Zhao, H. Y., and Dinesh-Kumar, S. P. 2004. Study of Arabidopsis thaliana resistome in response to Cucumber mosaic virus infection using whole genome microarray. Plant Molecular Biology 55: 501-520.
Meshi, T., Watanabe, Y., Saito, T., Sugimoto, A., Maeda, T., and Okada, Y. 1987. Function of the 30-Kd protein of Tobacco mosaic virus - Involvement in cell-to-cell movement and dispensability for replication. EMBO Journal 6: 2557-2563.
Monte, E., Tepperman, J. M., Al-Sady, B., Kaczorowski, K. A., Alonso, J. M., Ecker, J. R., Li, X., Zhang, Y. L., and Quail, P. H. 2004. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National Academy of Sciences of the United States of America 101: 16091-16098.
Moreno-Risueno, M. A., Gonzalez, N., Diaz, I., Parcy, F., Carbonero, P., and Vicente-Carbajosa, J. 2008. FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis. Plant Journal 53: 882-894.
Ni, M., Tepperman, J. M., and Quail, P. H. 1998. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95: 657-667.
Nishikiori, M., Dohi, K., Mori, M., Meshi, T., Naito, S., and Ishikawa, M. 2006. Membrane-bound Tomato mosaic virus replication proteins participate in RNA synthesis and are associated with host proteins in a pattern distinct from those that are not membrane bound. Journal of Virology 80: 8459-8468.
Olsen, A. N., Ernst, H. A., Lo Leggio, L., and Skriver, K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science 10: 79-87.
Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., and Kikuchi, S. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research 10: 239-247.
Osman, T. A. M., and Buck, K. W. 1996. Complete replication in vitro of Tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase. Journal of Virology 70: 6227-6234.
Osman, T. A. M., and Buck, K. W. 1997. The Tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-Binding subunit of yeast eIF-3. Journal of Virology 71: 6075-6082.
Padmanabhan, M. S., Gorepoker, S. P., Golem, S., Shiferaw, H., and Culver, J. N. 2005. Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAPI/IAA26 is associated with disease development. Journal of Virology 79: 2549-2558.
Parcy, F., Valon, C., Raynal, M., Gaubiercomella, P., Delseny, M., and Giraudat, J. 1994. Regulation of gene-expression programs during arabidopsis seed development - Roles of the ABI3 locus and of endogenous abscisic-acid. Plant Cell 6: 1567-1582.
Park, C. J., Shin, Y. C., Lee, B. J., Kim, K. J., Kim, J. K., and Paek, K. H. 2006. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris. Planta 223: 168-179.
Pepper, A. E., and Chory, J. 1997. Extragenic suppressors of the arabidopsis det1 mutant identify elements of flowering-time and light-response regulatory pathways. Genetics 145: 1125-1137.
Piechulla, B., Merforth, N., and Rudolph, B. 1998. Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Molecular Biology 38: 655-62.
Reichel, C., and Beachy, R. N. 1998. Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America 95: 11169-11174.
Ross, A. R. S., Wan, L. L., Yang, J. Y., Hegedus, D. D., and Kermode, A. R. 2007. Phosphorylation of the 12 S globulin cruciferin in wild-type and abi1-1 mutant Arabidopsis thaliana (thale cress) seeds. Biochemical Journal 404, 247-256.
Rozwadowski, K., Yang, W., and Kagale, S. 2008. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems. BMC Biotechnology 8: 88.
Saito, T., Yamanaka, K., and Okada, Y. 1990. Long-distance movement and viral assembly of Tobacco mosaic virus mutants. Virology 176: 329-336.
Sambrook, J., and Russell, D. 2001. Molecular cloning: A laboratory manual 3rd Ed. Cold spring harbor laboratory press, Cold spring harbor, New York, pp. 2344.
Sattarzadeh, A., Krahmer, J., Germain, A. D., and Hanson, M. R. 2009. A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. Molecular Plant 2: 1351-8.
Scholthof, K. B. G. 2004. Tobacco mosaic virus: A model system for plant biology. Annual Review of Phytopathology 42, 13-34.
Shi, B. J., Ding, S. W., and Symons, R. H. 1997. Plasmid vector for cloning infectious cDNAs from plant RNA viruses: High infectivity of cDNA clones of tomato aspermy cucumovirus. Journal of General Virology 78: 1181-1185.
Song, W. Y., Wang, Y. S., Pi, L. Y., Chen, X. H., Chakrabarty, P. K., Jiang, J., De Leon, A. L., Liu, G. Z., Li, L. C., Benny, U., Oard, J., and Ronald, P. C. 2006. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18: 3635-3646.
Stougaard, J., Jorgensen, J. E., Christensen, T., Kuhle, A., and Marcker, K. A. 1990. Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc3 and N23 gene promoters. Molecular and General Genetics 220: 353-60.
Tomenius, K., Clapham, D., and Meshi, T. 1987. Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with Tobacco mosaic virus. Virology 160: 363-71.
Ueki, S., and Citovsky, V. 2009. TMV MP gates plasmodesmata via ANK, a tobacco ankyrin-repeat protein which down-regulates callose deposits. Phytopathology 99: S165-S165.
Ueki, S., Spektor, R., Natale, D. M., and Citovsky, V. 2010. ANK, a host cytoplasmic receptor for the Tobacco mosaic virus cell-to-cell movement protein, facilitates intercellular transport through plasmodesmata. Plos Pathogens 6: e1001201
Vieweg, M. F., Fruhling, M., Quandt, H. J., Heim, U., Baumlein, H., Puhler, A., Kuster, H., and Andreas, M. P. 2004. The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant-Microbe Interact 17: 62-9.
Watanabe, T., Honda, A., Iwata, A., Ueda, S., Hibi, T., and Ishihama, A. 1999. Isolation from Tobacco mosaic virus-infected tobacco of a solubilized template-specific RNA-dependent RNA polymerase containing a 126K/183K protein heterodimer. Journal of Virology 73: 2633-2640.
Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., Wang, X., and Hou, Y. M. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant Journal 33: 271-283.
Xie, Q., Zhang, Y. Y., Yang, C. W., Li, Y., Zheng, N. Y., Chen, H., Zhao, Q. Z., Gao, T., and Guo, H. S. 2007. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19: 1912-1929.
Yamaji, Y., Hamada, K., Yoshinuma, T., Sakurai, K., Yoshii, A., Shimizu, T., Hashimoto, M., Suzuki, M., Namba, S., and Hibi, T. 2010a. Inhibitory effect on the Tobacco mosaic virus infection by a plant RING finger protein. Virus Research 153: 50-57.
Yamaji, Y., Kobayashi, T., Hamada, K., Sakurai, K., Yoshii, A., Suzuki, M., Namba, S., and Hibi, T. 2006. In vivo interaction between Tobacco mosaic virus RNA-dependent RNA polymerase and host translation elongation factor 1A. Virology 347: 100-108.
Yamaji, Y., Sakurai, K., Hamada, K., Komatsu, K., Ozeki, J., Yoshida, A., Yoshii, A., Shimizu, T., Namba, S., and Hibi, T. 2010b. Significance of eukaryotic translation elongation factor 1A in Tobacco mosaic virus infection. Archives of Virology 155: 263-268.
Yoo, S. D., Cho, Y. H., and Sheen, J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572.
Yoshii, A., Shimizu, T., Yoshida, A., Hamada, K., Sakurai, K., Yamaji, Y., Suzuki, M., Namba, S., and Hibi, T. 2008. NTH201, a novel class IIKNOTTED1-like protein, facilitates the cell-to-cell movement of Tobacco mosaic virus in tobacco. Molecular Plant-Microbe Interactions 21: 586-596.
Yukawa, Y., Sugita, M., Choisne, N., Small, I., and Sugiura, M. 2000. The TATA motif, the CAA motif and the poly(T) transcription termination motif are all important for transcription re-initiation on plant tRNA genes. Plant Journal 22: 439-47.
Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136: 2621-2632
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43542-
dc.description.abstract病毒本身基因體極小,包含之遺傳訊息不多,因此必須倚靠寄主系統完成其複製及增殖的過程;然而對於病毒透過何種方式調控寄主基因,目前所知仍然有限。先前實驗室研究,為探究這些寄主基因,利用菸草嵌紋病毒(Tobacco mosaic virus, TMV)感染阿拉伯芥原生質體後,收取0.5-24小時抽取原生質體RNA進行microarray試驗,篩選影響病毒複製早期的基因(Chen, 2010)。其中寄主基因PAP85,在感染後0.5-24小時表現量皆上升。而PAP85無論在轉基因植物或在原生質體進行PAP85 knock-down實驗,病毒累積量皆降低,可知PAP85影響病毒累積。本研究的目的,在於探討TMV調控寄主基因表現的可能方式。首先以快速增殖DNA尾端法(Rapid amplified of cDNA ends, RACE)找出PAP85轉錄起始點約在轉譯起始點上游24個核苷酸處,同時也利用電腦比較分析PAP85找出CIACADIANLELHC, NODCON1GM, OSE1ROOTNODULE, TATABOX4, TATAPVTRNALEU, TBOXATGAPB. CIACADIANLELHC可能為參與病毒誘導之cis-acting elements。接著嘗試建立原生質體過渡性短暫試驗(transient assay)系統,但因核酸轉染效率低,得到不一致之結果。為克服此一困難,以長度不一(107, 1227 及2000 bps) 之PAP85啟動子區域聯結GUS報導基因進行基因轉殖,以便進行病毒感染後PAP85啟動子功能性分析。目前已有轉基因植物可進行試驗,且在pCambia1301-PAP85-P2000與-P1227之轉基因植物中發現其GUS報導基因表現形式與內生性PAP85一致。另外,並分析四個在TMV感染前期類轉錄因子基因(transcription factor-like genes)的knock-out突變株,發現在At5g41140突變株中,病毒累積量減少,顯示At5g41140可能參與病毒累積的過程。zh_TW
dc.description.abstractThe genomes of plant viruses are small and encode limited genetic products. To complete their life cycles, plant viruses highly require assistance from host factors. In previous research, to study these host factors, Arabidopsis protoplasts infected by Tobacco mosaic virus (TMV) were used to screen the host genes responsive to TMV replication at initial stage of infection through microarray analysis (Chen, 2010). It is found that host gene PAP85 is continuously up-regulated during 0.5-24 hours post inoculation, and virus accumulation decreased both in PAP85 transient knock-down protoplasts and pap85-RNAi transgenic plants. In this thesis, we started to study how TMV induces the PAP85 in the initial stage during virus infection. Rapid amplification of cDNA ends (RACE) was conducted to determine the transcription start site of PAP85 and found that it is located at 24 bps upstream to translational start site. Computer assisted comparison analysis was conducted to identify the possible cis-acting elements, and CIACADIANLELHC, NODCON1GM, OSE1ROOTNODULE, TATABOX4, TATAPVTRNALEU, TBOXATGAPB. CIACADIANLELHC were identified that may be involved in regulation of PAP85. PAP85 promoter assay systems were initially established on transiently-expressed protoplasts; however, inconsistent results were obtained due to low transfection rates. The transgenic plants with different lengths (107, 1227 and 2000 bps) of PAP85 promoter fused GUS reporter gene were obtained. In plants transformed with pCambia1301-PAP85-P2000 and pCambia1301- PAP85-P1227, the GUS expression pattern is similar to the reported endogenous PAP85 expression. Besides, the knock-out mutants of 4 transcription factor-like genes (At1g09530, At2g38970, At4g29530, At5g41140) upregulated during TMV initial infection were obtained from the Arabidopsis Biological Resource Center (ABRC). After TMV inoculation, the virus accumulation decreased only in At5g41140 knockout plants, suggesting that At5g41140 was involved in virus accumulation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:23:07Z (GMT). No. of bitstreams: 1
ntu-100-R97633004-1.pdf: 2611612 bytes, checksum: 30d30584afedddc96f4a98037597baad (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract iv
Table of content vi
Chapter I. Introduction 1
1.1 Introduction of TMV 1
1.2 TMV and host factors 3
1.3 Previous studies about a genome-wide screen of host factors related to initial stage of virus replication 5
1.4 Aim of this thesis 8
Chapter II. Material and methods 10
2.1 Sequence acquisition and cis-acting elements analysis 10
2.2 RNA extraction 11
2.3 5’ RACE 12
2.4 Reverse transcriptase-polymerase chain reaction (RT-PCR) 13
2.5 Genomic DNA extraction and polymerase chain reaction (PCR) 14
2.6 Clone construction 15
2.7 Transgenic plants preparation 16
2.8 In vitro transcription 18
2.9 Arabidopsis protoplasts preparation and transfection 19
2.10 Promoter assay using dual luciferase system as reporter gene 20
2.11 Histochemical GUS staining 21
Chapter III. Results 22
3.1 PAP85 transcription start site is at 24 bps upstream to translation start site 22
3.2 Cis-acting elements analysis of PAP85 23
3.3 Clone construction 24
3.4 Promoter assay on protoplasts 25
3.5 Preparation of transgenic plants used in promoter assay 26
3.6 Virus accumulation decreases in At5g41140 knock-out mutant 27
Chapter IV. Discussion 28
References 34
Tables 47
Table 1. Primers used in this study 47
Table 2 The lengths of 5’UTR and correspondent numbers of clones obtained in 5’ RACE 50
Table 3. Common cis-acting elements among more than 10 of the 12 genes 51
Table 4. Common cis-acting elements among the three seed storage protein (At1g03880, At3g22640, At5g44120) 55
Table 5. The cis-acting elements that only PAP85 contained among the three seed storage protein genes (At1g03880, At3g22640, At5g44120) 59
Figures 63
Figure 1 Products of 5’ RACE after polymerase chain reaction amplification 63
Figure 2 Schematic representation of transcription start site of PAP85 and the neighboring region 64
Figure 3 Common cis-acting elements identified from PAP85 and 11 up-regulated genes. 65
Figure 4 Common cis-acting elements between PAP85 and the other two seed storage protein genes, At1g03880 and At5g44120. 66
Figure 5 Cis-acting elements appeared only on PAP85 promoter region 67
Figure 6 The diagram of pGL3-PAP85-P2000 and the restriction enzyme digestion pattern in agarose gel. 69
Figure 7 Luminescence of promoter assay on arabidopsis protoplasts 70
Figure 8 GUS histochemical staining of transgenic plants. 71
Figure 9 Virus accumulation in arabidopsis knock-out mutants 73
Appendix 75
Appendix I pCambia1301-PAP85-P2000 construction. 75
Appendix II The diagrams of T-DNA insertion sites in genomes of the knockout plants 76
Appendix III Genes induced by TMV in microarray data 0.5, 4 and 6 hours post inoculation 77
dc.language.isoen
dc.subjectAt5g41140zh_TW
dc.subject菸草嵌紋病毒zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject啟動子zh_TW
dc.subject寄主因子zh_TW
dc.subjectPAP85zh_TW
dc.subjectTobacco mosaic virusen
dc.subjectAt5g41140en
dc.subjectPAP85en
dc.subjecthost factoren
dc.subjectpromoteren
dc.subjectArabidopsis thalianaen
dc.title與菸草嵌紋病毒複製相關之阿拉伯芥基因PAP85啟動子功能性分析系統之建立zh_TW
dc.titleEstablishment of the promoter assay system of arabidopsis gene PAP85 involved in replication of Tobacco mosaic virusen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭秋萍(Chiu-Ping Cheng),洪挺軒(Ting-Hsuan Hung)
dc.subject.keyword菸草嵌紋病毒,阿拉伯芥,啟動子,寄主因子,PAP85,At5g41140,zh_TW
dc.subject.keywordTobacco mosaic virus,Arabidopsis thaliana,promoter,host factor,PAP85,At5g41140,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2011-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved