請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43535完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文貞 | |
| dc.contributor.author | Yi-Shien Duh | en |
| dc.contributor.author | 杜宜憲 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:23:01Z | - |
| dc.date.available | 2014-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-18 | |
| dc.identifier.citation | Almeida, A. J., & Souto, E. (2007). Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Advanced Drug Delivery Reviews, 59(6), 478-490.
Barbero, A. M., & Frasch, H. F. (2009). Pig and guinea pig skin as surrogates for human in vitro penetration studies: A quantitative review. Toxicology in Vitro, 23(1), 1-13. Barradell, L. B., Faulds, D., & McTavish, D. (1992). Lansoprazole. A review of its pharmacodynamic and pharmacokinetic properties and its therapeutic efficacy in acid-related disorders. Drugs, 44(2), 225-250. Bracht, S. (2000). Transdermal therapeutic systems: a review. Innovations in Pharmaceutical Technology, 92-98. Bronaugh, R. L., Stewart, R. F., & Congdon, E. R. (1982). Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol Appl Pharmacol, 62(3), 481-488. Cocera, M., Lopez, O., Pons, R., Amenitsch, H., & de la Maza, A. (2004). Effect of the electrostatic charge on the mechanism inducing liposome solubilization: a kinetic study by synchrotron radiation SAXS. Langmuir, 20(8), 3074-3079. Dietrich. (2001). Rapidly disintergrating tablet comprising an acid-labile active ingrefient. US patent, 7,1471869 B2. Dingler, A., Blum, R. P., Niehus, H., Muller, R. H., & Gohla, S. (1999). Solid lipid nanoparticles (SLN/Lipopearls)--a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J Microencapsul, 16(6), 751-767. Downing, D. T. (1992). Lipid and protein structures in the permeability barrier of mammalian epidermis. J Lipid Res, 33(3), 301-313. Eric Wane Smith , H. I. M. (2005). Percutaneous Penetration Enhancers, Second Edition. Percutaneous Penetration Enhancers, Second Edition., 17-33. Evrard, B., Amighi, K., Beten, D., Delattre, L., & Moes, A. J. (1999). Influence of melting and rheological properties of fatty binders on the melt granulation process in a high-shear mixer. Drug Dev Ind Pharm, 25(11), 1177-1184. Fang, J.-Y., Fang, C.-L., Liu, C.-H., & Su, Y.-H. (2008). Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). European Journal of Pharmaceutics and Biopharmaceutics, 70(2), 633-640. Francoeur. (1995). Piroxicam : evidence for local delivery following topical application. European journal of pharmaceutics and biopharmaceutics, 41(3), 175-183. Fuhrman, L. C., & Michniak, B. B. (1997). Effect of novel penetration enhancers on the transdermal delivery of hydrocortisone: an in vitro species comparison. Journal of Controlled Release, 45(2), 199-206. Gallarate, M., Trotta, M., Battaglia, L., & Chirio, D. (2008). Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation. J Microencapsul, 1-9. Gibaldi. (1982). Pharmacokinetics, 2nd edition. Pharmacokinetics, 2nd edition, 409-417 Hadgraft, J., & Lane, M. E. (Writer). (2006). Passive Transdermal Drug Delivery Systems: Recent Considerations and Advances, American Journal of Drug Delivery: ADIS International Limited, 153-160 Huang, Z. R., Hua, S. C., Yang, Y. L., & Fang, J. Y. (2008). Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol Sin, 29(9), 1094-1102. Ito, Y., Arai, H., Uchino, K., Iwasaki, K., Shibata, N., & Takada, K. (2005). Effect of adsorbents on the absorption of lansoprazole with surfactant. Int J Pharm, 289(1-2), 69-77. Katashima, M., Yamamoto, K., Sugiura, M., Sawada, Y., & Iga, T. (1995). Comparative pharmacokinetic/pharmacodynamic study of proton pump inhibitors, omeprazole and lansoprazole in rats. Drug Metab Dispos, 23(7), 718-723. Lewis, L., Boni, R., & Adeyeye, C. M. (1998). Effect of emulsifier blend on the characteristics of sustained release diclofenac microspheres. J Microencapsul, 15(3), 283-298. Mehnert, W., & Mader, K. (2001). Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev, 47(2-3), 165-196. Mei, Z., Chen, H., Weng, T., Yang, Y., & Yang, X. (2003). Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm, 56(2), 189-196. Muchtar, S., Abdulrazik, M., Frucht-Pery, J., & Benita, S. (1997). Ex-vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea. Journal of Controlled Release, 44(1), 55-64. Muller, R. H., Mader, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm, 50(1), 161-177. Muller, R. H., Radtke, M., & Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev, 54 Suppl 1, S131-155. Murthy, S. N., Sen, A., & Hui, S. W. (2004). Surfactant-enhanced transdermal delivery by electroporation. Journal of Controlled Release, 98(2), 307-315. Nitti, V. W., Sanders, S., Staskin, D. R., Dmochowski, R. R., Sand, P. K., MacDiarmid, S., et al. (2006). Transdermal delivery of drugs for urologic applications: Basic principles and applications. Urology, 67(4), 657-664. Pietkiewicz, J., Sznitowska, M., & Placzek, M. (2006). The expulsion of lipophilic drugs from the cores of solid lipid microspheres in diluted suspensions and in concentrates. Int J Pharm, 310(1-2), 64-71. Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nat Biotech, 26(11), 1261-1268. PU Xijuang, H. F. (2007). Determination of Main Components and the Related Substances in Lansoprazole for Injection by HPLC. CHINA PHARMACY, 18(13), 1013~1014. Richard H. Guy, J. H. (1989). Feasibility Assessment in Topical and Transdermal Delivery: Mathematical Models and In Vitro Studies Transdermal Drug Delivery: Second edition,Ch.1 Riegelman, S., & Collier, P. (1980). The application of statistical moment theory to the evaluation of in vivo dissolution time and absorption time. J Pharmacokinet Biopharm, 8(5), 509-534. Rowe, R. C. S., Paul J; Owen, Sian C. (2006). Handbook of Pharmaceutical Excipients. Handbook of Pharmaceutical Excipients. Santander-Ortega, M. J., & Jodar-Reyes, A. B. (2006). Colloidal stability of pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J Colloid Interface Sci, 302(2), 522-529. Saupe, A., Wissing, S. A., Lenk, A., Schmidt, C., & Muller, R. H. (2005). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) -- structural investigations on two different carrier systems. Biomed Mater Eng, 15(5), 393-402. Schafer, U. (2003). 'Dermatological and Transdermal Formulations': Kenneth A. Walters (Editor), Marcel Dekker, New York, Basel; 2002, 567 pages, US$ 195; ISBN 0-8247-9889-9. European Journal of Pharmaceutics and Biopharmaceutics, 55(1), 139-139. Shah, V. P., Flynn, G. L., Guy, R. H., Maibach, H. I., Schaefer, H., Skelly, J. P., et al. (1991a). In vivo percutaneous penetration/absorption, Washington, D.C., May 1989. Pharm Res, 8(8), 1071-1075. Shah, V. P., Flynn, G. L., Guy, R. H., Maibach, H. I., Schaefer, H., Skelly, J. P., et al. (1991b). Workshop report on in vivo percutaneous penetration/absorption. Washington D.C., May 1-3, 1989. Skin Pharmacol, 4(3), 220-228. Souto, E. B., Mehnert, W., & Muller, R. H. (2006). Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. J Microencapsul, 23(4), 417-433. Tanner, T., & Marks, R. (2008). Delivering drugs by the transdermal route: review and comment. Skin Res Technol, 14(3), 249-260. Ubaidulla, U., Reddy, M. V., Ruckmani, K., Ahmad, F. J., & Khar, R. K. (2007). Transdermal therapeutic system of carvedilol: effect of hydrophilic and hydrophobic matrix on in vitro and in vivo characteristics. AAPS PharmSciTech, 8(1), 2, E1-E8 United States Pharmacopeia drug information for the consumer. (1990). Mount Vernon, N.Y. :: Consumers Union. Vivek, K., Reddy, H., & Murthy, R. S. (2007). Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech, 8(4), E83. Walters, K. A. (2002). Methods for Studying Percutaneous Absorption. Dermatological and Transdermal Formulations, Ch.5 Xiong, G. L., Quan, D., & Maibach, H. I. (1996). Effects of penetration enhancers on in vitro percutaneous absorption of low molecular weight heparin through human skin. Journal of Controlled Release, 42(3), 289-296. Zografi, L. S. T. a. G. (1997). Spectroscopic Characterization of Interactions Between PVP and Indomethacin in Amorphous Molecular Dispersions Pharmaceutical Research, 14(12), 1691-1698 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43535 | - |
| dc.description.abstract | 經皮藥物遞送系統是藉由藥物分子經由皮膚外側吸收進入血流和皮下各層組織的一種給藥方式。近年來其應用不斷地受到矚目,主要原因是它所提供的方便性及安全性。更值得一提的是,對於不同藥物的投予需求也可以發揮功能性的幫助,例如已被廣泛使用的局部用藥就是以經皮藥物遞送系統提供局部且控釋的療效,也可以避免傳統藥物投予途徑帶來的負作用(例如口服非固醇類消炎藥引起的腸胃道不適);或者是具有酸鹼不穩定性的藥物,可以利用經皮藥物遞送系統提供一個新的藥物遞輸途徑,避免在口服給藥的過程中被消化道多變的酸鹼性環境所破壞。在本研究中,主要針對吲哚洒美辛與蘭索拉唑進行奈米脂質顆粒劑型的製備與應用的探討。
藉由混合不同類型的油脂質作油相,與不同的乳化系統為水相,製備出含藥固體脂質奈米粒與奈米結構脂質載體。並且對製劑成品進行基本的物性探討,例如不同賦型劑組合下的熱分析性質、其表面電位與粒徑以及製劑與藥物安定性分析。並且對不同的奈米脂質顆粒製劑,以直立式擴散槽與動物或人工皮膜,進行的體外穿透試驗;或以大鼠進行體內經皮吸收試驗,評估不同劑型與給藥方式下,藥物的體外穿透程度或體內藥物動力學性質。 實驗結果顯示,以示差掃描熱分析儀與光學顯微鏡觀察的結果,由Precirol ATO 5與castor oil組成的油相基質最符合吲哚美洒辛奈米結構脂質載體在熱力學與藥物性質上的製劑需求,並且在油相中使用結晶抑制劑可以進一步降低吲哚美洒辛的結晶性,有助於有助於維持製劑的存放安定性。製備完成的吲哚美洒辛奈米結構脂質載體的粒徑大約在200 nm,表面電位為-10 mV。吲哚美洒辛奈米結構脂質載體在小豬皮上具有兩段式的藥物穿透性質,相較於市售凝膠屬較為緩慢,適合應用於慢性疼或發炎等症狀。 蘭索拉唑奈米結構脂質載體,其粒徑、表面電位與熱性質受固體脂質的選擇與搭配比例,以及水相中乳化劑的選擇影響而有所不同。使用硬脂胺作為油相的材料有助於維持蘭索拉唑在製劑過程中的安定性。以無毛天竺鼠皮與大白鼠皮所進行的藥物體外穿透試驗中,藥物的穿透能力受配方組成改變有很大的影響,油相中的硬脂胺可以提高藥物穿透的能力,而不同種類穿透促進劑對於提供藥物穿透最大的效益上有不同的最適添加濃度。體內經皮吸收試驗的結果,顯示蘭索拉唑奈米結構脂質載體的親水凝膠製劑與靜脈注射及口服蘭索拉唑相比,提供了延長藥物體內滯留的特性,適合應用於產生慢性胃食道逆流症狀之消化道疾病。 | zh_TW |
| dc.description.abstract | The transdermal drug delivery system (TDDS) becomes more attractive in recent years by providing a convenient and safe drug administration route. For different drugs, it can further serve as functional roles in different purposes, for example, providing a localized and controlled drug delivery for NSAIDs without side effects on gastrointestinal tract; or a new way of acid-labile drugs’ administration to avoid from degradation in gastrointestinal tract or liver. The aim of this study is to develop dosage forms of indomethacin and lansoprazole with lipid nanoparticles and further discuss the application on TDDS.
By using different lipid blends as the oil phase and various emulsification systems, we prepared different drug loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), and determined their physical properties, such as thermal behavior, particle size, zeta-potential, and storage stability. Finally, we also examined the in vitro drug permeation and in vivo pharmacokinetic study of different dosage forms. As the results from differential scanning calorimetry and light spectrometer, the oil phase with a blend of Precirol ATO 5 and castor oil provides suitable physical properties for carrying indomethacin., and the storage stability can be further improved by combination of a crystallization inhibitor in the oil phase. The size of indomethacin loaded NLCs is around 200 nm, and zeta-potential is about -10 mV. Indomethacin loaded NLC provides a two-stage permeation behavior, and its drug permeation ability is lower than a commercial gel, which is benefit for treating chronic pain and inflammation. Particle size , zeta-potential and thermal behavior of the lansoprazole loaded NLCs are related with the compositions in different ratio of lipids or surfactants. Stearylamine can protect lansoprazole from degradation during the hot-melt emulsification process. The in vitro drug permeation behavior of lansoprazole loaded NLC and NLC enriched hydrogel are affected by the formulation compositions. Stearylamine in oil phase helps drug permeation; different permeation enhancers in hydrogel provide the best improvement on drug permeation with different concentrations. The in vivo pharmacokinetic study shows that NLC enriched hydrogel applied in rats’ skin provides a prolonged drug delivery rather than either intravenous bolus or oral administration, which makes an improvement of treating chronic gastroesophageal reflux disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:23:01Z (GMT). No. of bitstreams: 1 ntu-98-R95423020-1.pdf: 2763096 bytes, checksum: f9fb386510f972d94c992ed15581a4fb (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目 錄 I
圖目錄 VIII 表目錄 XI 藥品縮寫代號對照表 XII 摘 要 XIII 英文摘要 XV 第一章 緒論 1 一、經皮藥物遞送系統簡介 1 二、皮膚的屏障特性與藥物穿透皮膚的途徑 2 三、影響藥物穿皮吸收的因素與改善藥物經皮通透性的方法 4 四、固體脂質奈米粒與奈米結構脂質載體與經皮藥物遞送系統上的應用 6 五、穿皮試驗的評估模式 10 第二章 材料與試劑介紹 12 第一部分:吲哚洒美辛固體脂質奈米粒(solid lipid nanoparticle, SLN)與奈米結構脂質載體(nanostructured lipid carrier, NLC)的製備與應用 12 一、吲哚洒美辛(indomethacin) 12 二、硬脂酸棕櫚酸甘油酯(glyceryl palmitostearate,Precirol ATO 5) 13 三、蓖麻油(castor oil) 13 四、聚乙烯吡咯烷酮(polyvinyl pyrrolidone,PVP) 14 五、山梨糖醇單硬脂酸酯(sorbitan monostearate,Span 60) 14 六、聚氧乙烯聚氧丙烯醚嵌段共聚物 15 七、脫氧膽酸鈉(sodium deoxycholate) 15 第二部分:蘭索拉唑固體脂質奈米粒(solid lipid nanoparticle, SLN)奈米結構脂質載體(nanostructured lipid carrier, NLC)的製備與應用 16 一、蘭索拉唑(lansoprazole) 16 (一) 物化性質 16 (二) 蘭索拉唑在人體與大鼠體內的藥物動力學性質 16 二、硬脂胺(Stearylamine) 17 三、單硬脂酸甘油酯(glyceryl monostearate,GMS) 18 四、十二烷基硫酸鈉(sodium dodecyl sulfate,SDS) 18 五、聚氧乙烯聚氧丙烯醚嵌段共聚物(Pluronic F-68) 19 六、三仙膠(xanthan gum) 19 七、穿透促進劑(penetration enhancer) 20 第三章 實驗動機與目的 21 第四章 實驗試劑與儀器 22 一、試劑 22 二、儀器與耗材 24 三、藥品溶液及緩衝溶液之配製 25 四、體外穿透試驗用動物皮膜處理 26 五、體內試驗用動物 27 第五章 實驗方法 28 第一部分:吲哚洒美辛固體脂質奈米粒(solid lipid nanoparticle, SLN)與奈米結構脂質載體(nanostructured lipid carrier, NLC)的製備與應用 28 一、以示差掃描熱分析儀(differential scanning calorimetry, DSC)對油相基質進行篩選與評估 29 (一)固體脂質與液態油脂的組成種類與比例之篩選 30 (二)油相基質添加物對吲哚洒美辛結晶性影響之探討 31 二、製備吲哚洒美辛SLN與NLC 32 (一)控制變因 32 (二)製備方式 32 三、吲哚洒美辛SLN與NLC之物性探討 35 (一)粒徑與表面電位(zeta potential, ξ)分析 35 (二)安定性評估 36 四、吲哚洒美辛的定量方法 36 (一)同日內精密度、準確度試驗 37 (二)異日內精密度、準確度試驗 37 五、吲哚洒美辛SLN與NLC之體外穿透試驗 37 第二部分:蘭索拉唑固體脂質奈米粒(solid lipid nanoparticle, SLN)奈米結構脂質載體(nanostructured lipid carrier, NLC)的製備與應用 39 一、 製備蘭索拉唑SLN與NLC 40 (一)控制變因 40 (二)製備方式 40 二、蘭索拉唑的定量方法 43 (一)高效能液相層析條件 43 (二)同日內精密度、準確度試驗 43 (三)異日內精密度、準確度試驗 44 三、蘭索拉唑SLN與NLC之物性 44 (一)懸浮液內藥含量測定 44 (二)油相粗混合物與懸浮液凍乾產物的熱分析 45 (三)粒徑與表面電位(zeta potential, ξ)分析 46 (四)安定性評估 46 四、製備蘭索拉唑NLC的親水凝膠劑型 46 (一)控制變因 46 (二)製備方式 48 五、蘭索拉唑NLC與蘭索拉唑NLC親水凝膠製劑的體外穿透試驗 49 六、蘭索拉唑NLC親水凝膠製劑的體內經皮吸收試驗 51 (一)體內經皮吸收試驗 51 (二)血漿中蘭索拉唑的定量方法 52 第六章 實驗結果 56 第一部分:吲哚洒美辛固體脂質奈米粒(solid lipid nanoparticle, SLN)與奈米結構脂質載體(nanostructured lipid carrier, NLC)的製備與應用 56 一. 以示差掃描熱分析儀(DSC)對載體材料進行篩選與評估 56 (一)固體脂質與液態油脂的組成種類與比例之篩選 56 (二)油相基質添加物對吲哚洒美辛結晶性影響之探討 59 二、吲哚洒美辛SLN與NLC之物性 61 (一)粒徑與表面電位(zeta potential, ξ)分析 61 (二)安定性評估 62 三、吲哚洒美辛的定量方法 64 四、吲哚洒美辛SLN與NLC體外穿透試驗 67 (一)直立式Franz擴散槽與人工透析膜系統 67 (二)直立式Franz擴散槽與小豬皮系統 69 第二部分:蘭索拉唑固體脂質奈米粒(solid lipid nanoparticle, SLN)與奈米結構脂質載體(nanostructured lipid carrier, NLC)的製備與應用 71 一、蘭索拉唑SLN與NLC之物性 71 (一)、蘭索拉唑SLN與NLC懸浮液內藥含量 71 二、蘭索拉唑的定量方法 72 (二)蘭索拉唑NLC的油相粗混合物與懸浮液凍乾產物的熱分析 75 (三)蘭索拉唑NLC的粒徑與表面電位(zeta potential, ξ)分析 78 (四)安定性評估 80 三、蘭索拉唑NLC與蘭索拉唑NLC親水凝膠製劑的體外穿透試驗 81 (一)人工透析膜與無毛天竺鼠皮的體外穿透比較 81 (二) 蘭索拉唑NLC奈米懸浮液於無毛天竺鼠皮的體外穿透評估 83 (三)無毛天竺鼠皮與SD大鼠皮的體外穿透比較 84 (四) 蘭索拉唑NLC親水凝膠製劑於SD大鼠皮系統下的體外穿透評估 85 四、蘭索拉唑NLC親水凝膠製劑的體內經皮吸收試驗 89 (一)血漿藥物濃度定量 89 (二)實驗結果 90 第七章 討論 93 第一部分:吲哚洒美辛固體脂質奈米粒(solid lipid nanoparticle, SLN)與奈米結構脂質載體(nanostructured lipid carrier, NLC)的製備與應用 93 一. 以示差掃描熱分析儀(DSC)對載體材料進行篩選與評估 93 (一)固體脂質與液態油脂的組成種類與比例之篩選 93 (二)油相基質添加物對吲哚洒美辛結晶性影響之探討 95 二、吲哚洒美辛SLN與NLC之物性 98 (一)粒徑與表面電位(zeta potential, ξ)分析 98 (二)安定性評估 98 三、含吲哚洒美辛SLN與NLC之體外穿透試驗 100 (一)直立式的Franz擴散槽與人工透析膜系統 100 (二)直立式的Franz擴散槽與小豬皮系統 101 第二部分:蘭索拉唑固體脂質奈米粒(solid lipid nanoparticle, SLN)奈米結構脂質載體(nanostructured lipid carrier, NLC)的製備與應用 103 ㄧ、蘭索拉唑SLN與NLC之物性 103 (一)、蘭索拉唑SLN與NLC懸浮液內藥含量 103 (二)蘭索拉唑NLC的油相粗混合物與懸浮液凍乾產物的熱分析 104 (三)蘭索拉唑NLC的粒徑與表面電位(zeta potential, ξ)分析 105 (四)安定性評估 107 二、蘭索拉唑NLC與蘭索拉唑NLC親水凝膠製劑的體外穿透試驗 107 (一)人工透析膜與無毛天竺鼠皮的體外穿透比較 107 (二)蘭索拉唑NLC奈米懸浮液於無毛天竺鼠皮的體外穿透評估 108 (三)蘭索拉唑NLC親水凝膠製劑於SD大鼠皮系統下的體外穿透評估 109 三、蘭索拉唑NLC親水凝膠製劑的體內經皮吸收試驗 110 第八章 結論 112 第九章 參考文獻 113 | |
| dc.language.iso | zh-TW | |
| dc.subject | 固體脂質奈米粒 | zh_TW |
| dc.subject | 蘭索拉唑 | zh_TW |
| dc.subject | 奈米結構脂質載體 | zh_TW |
| dc.subject | 經皮藥物遞送系統 | zh_TW |
| dc.subject | 吲 | zh_TW |
| dc.subject | 洒美辛 | zh_TW |
| dc.subject | indomethacin | en |
| dc.subject | transdermal drug delivery systems | en |
| dc.subject | NLC | en |
| dc.subject | nanostructured lipid carriers | en |
| dc.subject | lansoprazole | en |
| dc.subject | SLN | en |
| dc.subject | solid lipd nanoparticles | en |
| dc.title | 奈米結構脂質載體之研究及其經皮遞送之應用 | zh_TW |
| dc.title | Study of Nanostructured Lipid Carriers (NLCs) and its Application in Transdermal Delivery System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃耀斌,方嘉佑 | |
| dc.subject.keyword | 固體脂質奈米粒,奈米結構脂質載體,經皮藥物遞送系統,吲,哚,洒美辛,蘭索拉唑, | zh_TW |
| dc.subject.keyword | solid lipd nanoparticles,SLN,nanostructured lipid carriers,NLC,transdermal drug delivery systems,indomethacin,lansoprazole, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
