請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43534
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐濟泰 | |
dc.contributor.author | Ai-Lan Huang | en |
dc.contributor.author | 黃愛嵐 | zh_TW |
dc.date.accessioned | 2021-06-15T02:23:00Z | - |
dc.date.available | 2014-08-20 | |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-18 | |
dc.identifier.citation | 工業技術研究院。2008。生質燃料發展現況與展望。工業技術研究院。
王翰聰。2004。瘤胃細菌纖維及蛋白質分解酵素之生產與利用。國立台灣大學畜 產所博士論文。 古森本。2008。生質能源作物之開發與潛力。農業生技產業季刊。植物種苗生技。13: 46-53。 林祐生、李文乾。2009。生質酒精。科學發展。433: 20-25。 陳文恆、郭家倫、黃文松、王嘉寶。2007。纖維酒精技術之發展。農業生技產業 季刊。植物種苗生技。9: 62-69。 曾益民。2007。生質酒精汽油之發展。綠色能源專輯。22-31。 戴上凱。2004。熱穩定性纖維素分解細菌分離株之特性探討與親緣關係之研究。 國立中山大學生物科學研究所博士論文。 簡道南。2005。矽(Si)對植物生長有利的元素。台肥季刊。46:61-65。 Abbi, M., R.C. Kuhad and A. Singh. 1996. Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae: Fermentation behavior. Process Biochem. 31: 555-560. Alfani, F., A. Gallifuoco, A. Spera and M. Cantarella. 2000. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J. Ind. Microbiol. Biotechnol. 25:184-192. Anthony, J.C. 1984. Gas chromatographic determination of ethanol in beer. J. Assoc. Off. Anal. Chem. 64: 192–193. Antoni, D.,V.V. Zverlov and W.H. Schwarz. 2007. Biofuels from microbes. Appl. Microbiol. Biotechnol. 77:23-35. Balat, M., H. Balat, and C. Oz .2008. Progress in bioethanol processing. Progress in Energy and Combustion Science 34: 551-573. Ballesteros, M., J.M. Oliva, M.J. Nergo, P. Manzanares and I. Ballersteros. 2004. Ethanol from lignocellulosic material by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem. 39:1843-1848. Bentley, O. G., B. V. Quicke and A. L. Moxon. 1958. Digestibility and feeding value of soybean hulls. J. Anita. Sci. 17:1193. Bryant, M.P. and N. Small. 1956. Characteristics of two new genera of anaerobic curved rods isolated from rumen of cattle. J. Bacteriol. 72:22-26. Cadoche, L. and G.D. L’opez. 1989. Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol. Wastes 30: 153-157. Cardona, C.A. and O.J. Sanchez. 2007. Fuel ethanol production: process design trends and integration opportunities. Bioresource Technol. 98: 2415–2457. Chang, V.S. and M.T. Holtzapple. 2000. Fundamental factors affecting enzymatic reactivity. Appl. Biochem. Biotechnol. 5–37. Cheng, K.J., D. Dinsdale and C.S. Stewart. 1979. Maceration of clover and grass leaves by Lachnospira multiparus. Appl. Environ. Microbiol. 38: 723-729. Chum, H.L., D.K. Johnsoon, and S. Black. 1988. Organosolvent pretreatment for enzymatic hydrolysis of poplars: 1. enzyme hydrolysis of cellulosic residues. Biotechnol. Bioeng. 31: 643-649. Cosgrove, D. J. 1998. Cell walls: structures, biogenesis, and expansion. In: Plant Physiology. pp: 409-443. Dehority, B.A. 1963. Isolation and characterization of several cellulolytic bacteria from in vitro rumen fermentations. J. Dairy Sci. 46: 217-222. Dehority, B.A. 1993. Microbial ecology of cell wall fermentation. Forage Cell Wall Structure and Digestibility 71:425-453. Ding, S.Y., Q. Xu, M. Crowley, Y. Zeng, M. Nimlos, R. Lamed, E. A Bayer, and M. E. Himmel. 2008. A biophysical perspective on the cellulosome: new opportunities for biomass conversion.Current Opinion in Biotechnology 19:218-227. Duff, S.J.B. and W.D. Murray. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55: 1-33. Dušková, D. and M. Marounek. 2001. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Letters in Applied Microbiology. 33: 159-163. Fan, L.T., M.M. Gharpuray, and Y.H. Lee. 1987. Cellulose hydrolysis. Biotechnology Monographs 3:57. Fu, N. and P. Peiris. 2007. Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobils and Pachysolen tannophilus. World J. Microbiol. and Biotechnol. 24: 1091-1097. Galbe, M. and G. Zacchi. 2007. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Engin./Biotechnol.108:41-65. Grous, W.R., A.O. Converse, and H.E. Grethlein. 1986. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb. Technol. 8: 274-280. Halliwell, G. and M. P. Bryant. 1963. The cellulolytic acitivity of pure strains of bacteria from rumen of cattle. J. Gen. Microbiol. 32:441-448. Han, Y. W. 1975. Microbial fermentation of rice straw: nutritive composition and in vitro digestibility of the fermentation products. Appl. Microbiol. 29: 510-514. Hilter, P. and B.A. Dehority. 1983. Effect of soluble carbohydrate on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. Microbiol. 46: 642-648. Hintz, H. F., M. M. Mathias, H. F. Ley, Jr. and J. K. Loosli. 1964. Effects of processing and of feeding hay on the digestibility of soybean hulls. J. Anita. Sci. 23:43. Holtzapple, M.T., A.E. Humphrey, and J.D. Taylor. 1989. Energy requirements for the size reduction of poplar and aspen wood. Biotechnol. Bioeng. 33: 207-210. Hungate, R. E. 1963. Polysaccharide storage and growth efficiency in Ruminococcus albus. J. Bacteriol. 86:848-854. Hungate,R. E. and R.J., Stack. 1982. Phenylpropanoic acid: growth factor for Ruminococcus albus. Appl. Environ. Microbiol. 44:79-83. Kaar, W.E. and M.T. Holtzapple. 2000. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy 18:189-199. Kornegay, E. T. 1978. Feeding value and digestibility of soybean hulls for swine. J. Anim. Sci. 47:1272-1280. Kruse, B. and K. Schugerl. 1996. Investigation of ethanol formation by Pachysolen tannophilus from xylose and glucose-xylose cosubstrates. Proc. Biochem. 31: 389-408. Kudo, H., K.J. Cheng, and J. W. Costerton. 1987. Interactions between Treponema bryantii and cellulolytic bacteria in vitro degradation of straw cellulose. Can. J. Microbiol. 33: 244-48. Litzen, D., D. Dixon, P. Gilcrease, and R. Winter. 2006. Pretreatment of biomass for ethanol production. US patent 0141,584. Lynd, L.R., P.J. Weimer, W.H. van Zyl, and I.S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577 Lee, J.W., K.S. Gwak, J.Y. Park, M.J. Park, D.H. Choi, M. Kwon, and I.G. Choi. 2007. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J. Microbiol. 45: 485-491 McGregor, C. A., F. G. Owen and L. D. McGill. 1976. Effect of increasing ration fiber with soybean mill run on digestibility and lactation performance. J. Dairy Sci. 59:682. McCarthy, J.E. and M. Tiemann. 1998. MTBE in gasoline: clean air and drinking water issues. In: Water Pollution Issues and Developments. pp:25-50. Mes-Hartree, M., B. E. Dale, and W.K. Craig. 1988. Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose. Appl. Microbiol. Biotechnol. 29: 462-468. McMillan, J.D. 1994. Pretreatment of lignocellulosic biomass.In: Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC, pp:292-324. Moniruzzaman, M. 1995. Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis. World J. Microbiol. Biotechnol. 11:646-648. Miller, G.L. 1959. Use of DNS reagent for determination of reducing sugars. Anal. Chem. 31: 426–428. Ng, T.K., A. Ben-Bassat, and J.G. Zeikus. 1981. Ethanol production by thermophilic bacteria : Fermentation of cellulosic substrate by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfurcum. Appl. Environ. Microbiol. 41: 1337-1343. Olsson, L., H. R. Soerensen, B. P. Dam, H. Christensen, K. M. Krogh, and A. S. Meyer. 2006. Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 129-132:117-129. Palmqvist, E. and B. Hahn-Hagerdal. 2000. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 25-33. Panesar, P. S., S.S. Marwaha, and J. F. Kennedy. 2006. Zymomonas mobilis: an alternative ethanol producer. J. Chem. Technol. Biotechnol. 81:623-635. Paster, B. J. and E. Canale-Parola. 1985. Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen. Appl. Environ. Microbiol. 50:212-219. Patel, M. M and R. M. Bhatt. 1992. Optimization of the alkaline peroxide pretreatment for the delignification of rice straw and its applications. J. Chem. Technol. Biotechnol. 53:253-263. Puri, V.P. 1984. Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol. Bioeng. 26:1219–1222. Rao, R.S., C.P. Jyothi, R.S. Prakasham, P.N. Sarma, and L.V. Rao. 2006. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource Technol.97: 1974–1978. Rogers .P.L., K.J. Lee, and Tribe D.E. 1980. High productivity ethanol fermentations with Zymomonas mobilis. Process Biochem. 15:7-11. Schirmer-Michela, Â. C., S. H. Flôresa, P. F. Hertza, G. S. Matosa and M.A. Záchia Ayub. 2007. Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresource Technology 99:2898-2904. Schurz, J. 1978. Bioconversion of Cellulosic Substances into Energy Chemicals and Microbial Protein Symposium Proceedings, II T, New Delhi, pp. 37. Sehoon, K. and M.T. Holtzapple. 2005. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96: 1994-2006. Sharma, N., K.L. Kalra, H.S. Oberoi, and S. Bansal. 2007. Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J. Microbiol.47: 310-316. Sivers, M.V. and G. Zacchi. 1995. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour. Technol. 51: 43-52. Snyder, H.E. and T.W. Kwon. 1987. Soybean utilization. In: Van Norstrand Reinhold, New York, p. 60. Sreenath, H.K., R.G. Koegel, A.B. Moldes, T.W. Jeffries and R.J. Straub. 2001. Ethanol production from alfalfa fiber fraction by saccharification and fermentation. Process Biochem. 36: 1199-1204. Stack, R.J. and R.E. Hungate. 1984. Effect of 3-phenylpropanoic acid on capsule and cellulose of Ruminococcus albus 8. Appl. Environ. Microbiol. 48:218-223. Stanton, T.B., and E. Canale-Parola. 1980. Treponema bryantii sp. Nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch. Microbiol. 127:145-156. Sternberg, D. 1976. Production of cellulose by Trichoderma. Biotechnol. Bioeng. Symp. 35-53. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83:1-11. Vidal, P.F. and J. Molinier. 1988. Ozonolysis of lignin-improvement of in vitro digestibility of poplar sawdust. Biomass 16: 1-17. Wagner, D. G., J. K. Loosli, H. F. Hintz and R. G. Warner. 1965. Value of soybean flakes for milk production. J. Dairy Sci. 48:553 Wang, M., C. Saricks, and D. Santini. 1999. Effects of fuel ethanol use on fuel-cycle energy and greenhouse gas emissions. Argonne National Laboratory, University of Chicago. Wati, L., S. Kumari and B. S. Kundu. 2007. Paddy straw as substrate for ethanol production. Indian J. Microbiol. 47: 26-29. Wood, T.M., C.A. Wilson and C.S. Stewart. 1982. Preparation of cellulose from cellulolytic anaerobic bacterium Ruminococcus albus and its release from the bacterial cell wall. Biochem. J. 205:129-137. Wyman, C.E. 1994. Ethanol from lignocellulosic biomass: technology, economics and opportunities. Bioresour. Technol. 50: 3-16. Yang, B., and C. E. Wyman. 2007. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Bioref. 2:26-40. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43534 | - |
dc.description.abstract | 由於石油能源枯竭,再生能源已經受到世界各地的矚目。其中生質酒精為最有潛力的替代能源。現今大部分生質能源多以甘蔗和玉米為原料,然而這些原料也提供給人類和動物當作食物,因此會造成競爭效應,導致物價上漲。最近木質纖維素原料被認為是具有潛力的替代原料,木質纖維素原料包含農業廢棄物、森林廢棄物及能源作物。然而以木質纖維素原料生產酒精最主要的障礙為其難被分解的特性。直接由瘤胃微生物水解木質纖維素原料後發酵成酒精可能是一個不錯的方式。
本試驗以大豆殼、五節芒和稻草為原料,將瘤胃纖維分解菌Ruminococcus albus 7和瘤胃中可生產酒精者Treponema saccharophilum PB 或Lachnospira multiparus D32共培養,於0、4、8、12、24、36、48小時收樣品並測試乾物質降解率、pH值、還原糖濃度及酒精濃度。 當R. albus 7和T. saccharophilum PB共同培養時乾物質降解於0-8小時劇烈上升,8小時後趨緩但繼續進行。同時,pH值於0-8小時隨著總還原糖濃度劇烈下降而下降。之後還原糖濃度變化不大,顯示由原料釋放出的糖立即被利用而生成酒精。酒精濃度到達最大值在8-12小時之間,而後變化不大。當R. albus 7和L. multiparus D32共同培養,乾物質降解和還原糖濃度變化與R. albus 7和T. saccharophilum PB共同培養時有類似趨勢。然而其酒精濃度在24小時前達到高峰而後隨時間下降。雖然大豆殼於兩個實驗均有較佳的乾物質降解率,然而搭配T. saccharophilum這組酒精產量在各原料間沒有差異,但L. multiparus這組則是以五節芒為原料下酒精產量較高。另外,當添加25 μM 3-phenylpropanoic acid (PPA) 於R. albus 7和T. saccharophilum PB共同培養液,使五節芒的降解率及其酒精產量均顯著提升(P < 0.05)。 綜上所述,混合瘤胃細菌可以利用木質纖維素物質生產生質酒精,然而不同物質適合不同的微生物利用,此外添加PPA可以有效提升較難分解的木質纖維素物質之降解率並提升酒精產量。 | zh_TW |
dc.description.abstract | Because of the depletion of the fossil fuel reserve, it has attracted great attention in the renewable energy resources around the world. Bioethanol is one of the most promising alternative energy resources. Nowadays, most bioethanol is produced from sugarcane and corn. However, these materials are also provided as food for human or animals. Therefore, it will cause a competitive threat, resulting in high-rised price. Currently, lignocellulosic materials are considered as potential substitutes. They include agricultural residues, forestry residues and dedicated energy crops. Difficulty of hydrolysis is the major barrier of bioethanol production from lignocellulosic material. Directly hydrolyzing the biomass and fermenting to ethanol by ruminal bacteria may provide an alternative way for the bioethanol production from recalcitrant lignocellulosic materials.
In this study, silvergrass, rice straw and soybean hull were used as substrates to produce ethanol by coculture of ruminal cellulolytic bacteria Ruminococcus albus 7 with one of major ethanol producers in rumen Treponema saccharophilum PB or Lachnospira multiparus D32. Samples from coculture incubation were harvested at 0, 4, 8, 12, 24, 36 and 48 h for measurements of dry matter digestibility, pH value, reducing sugar concentration and ethanol concentration. When R. albus 7 was cocultured with T. saccharophilum PB, substrates’ DM digestibility increased markedly from 0~8 h, then slowed down after 8 h. At the same time, the pH values decreased from 0~8 h along with the dramatical decrease of total reducing sugar concentrations. Afterwards, total reducing sugar concentration remained fairly constant, indicating sugar produced by cellulolytic bacteria was consumed by saccharolytic bacteria instantly. Concentrations of ethanol reached a maximum between 8 and 12 h and then remained fairly constant. When R. albus 7 was cocultured with L. multiparus D32, the substrates’ DM digestibility and reducing sugar concentration had a similar change pattern as R. albus 7 with T. saccharophilum PB. However, ethanol production increased to a maximum before 24 h and then decreased by time. Although soybean hull had the greatest digestibility in both coculture experiments, the ethanol yield was no significantly different from other two substrates by R. albus 7 and T. saccharophilum PB coculture, and the greatest ethanol yield was achieved with silvergrass by R. albus 7 and L. multiparus D32 coculture. Additionally, when adding 25 μM 3-phenylpropanoic acid (PPA), both of the DM digestibility of silvergrass and the yield of ethanol increased significantly in the coculture of R. albus 7 and T. saccharophilum PB (P < 0.05). In conclusion, mixed ruminal bacteria can produce bioethanol from lignocellulosic materials rapidly. However, different materials were suitable for different microorganisms to utilize. In addition, adding PPA can significantly improve substrate digestibility and ethanol yield for harsh lignocellulosic materials. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:23:00Z (GMT). No. of bitstreams: 1 ntu-98-R96626019-1.pdf: 586980 bytes, checksum: b5fa6b79a4d35eea034644f591a14f33 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
致謝 i 目錄 ii 圖次 iii 表次 v 壹、中文摘要 1 貳、英文摘要 2 参、文獻檢討 4 肆、材料與方法 21 伍、結果與討論 35 陸、結論 59 柒、參考文獻 60 | |
dc.language.iso | zh-TW | |
dc.title | 利用瘤胃細菌以木質纖維素物質為原料生產生質酒精 | zh_TW |
dc.title | Producing bioethanol from lignocellulosic materials by ruminal bacteria | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王翰聰,陳靜宜,劉?睿 | |
dc.subject.keyword | 木質纖維素物質,瘤胃細菌,生質酒精, | zh_TW |
dc.subject.keyword | lignocellulosic material,ruminal bacteria,bioethanol, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 573.22 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。