Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43532
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔(Si-Chen Lee)
dc.contributor.authorChen-Yun Wangen
dc.contributor.author王晨昀zh_TW
dc.date.accessioned2021-06-15T02:22:58Z-
dc.date.available2009-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-18
dc.identifier.citation[1] S. Tans, A. Verschueren, C. Dekker, Nature (London) 393, 49 (1998)
[2] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73,
2447 (1998)
[3] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Lett.
80, 3817 (2002)
[4] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Nano Lett. 1, 453 (2001)
[5] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, Nano Lett. 2, 869 (2002)
[6] D. Appell, Nature (London) 419, 553 (2002)
[7] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424, 654 (2003)
[8] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee,
Appl. Phys. Lett. 73, 3396 (1998)
[9] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee,
Appl. Phys. Lett. 75, 1842 (1999)
[10] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science 287,
1471(2000)
[11] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2000)
[12] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science
294,1313 (2001)
[13] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 3, 149 (2003)
[14] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415,
617 (2002)
[15] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293, 1289 (2001)
[16] D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S.Fu, H. Z. Zhang, Y. Ding,
G. C. Xiong, L. P. You, J. Xu, S. Q. Feng, Phys. Rev. B 59, R2498 (1999)
[17] S. Chung, J. Yu, J. R. Heath, Appl. Phys. Lett. 76, 2068 (2000)
[18] J. Qi, A. M. Belcher, and J. M. White, Appl. Phys. Lett. 82, 2616 (2003)
[19] D. Appell, Nature (London) 419, 553 (2002)
[20] K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang,
M. Cabassi, T. S. Mayer, S. W. Novak, Appl. Phys. Lett. 85, 3101 (2004)
[21] C. Y. Meng, B. L. Shih, S. C. Lee, J. Nanopart. Res. 7, 615 (2005)
[22] Y. Wang, K. Lew, T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing, T.
S. Mayer, Nano Lett. 5, 2139 (2005)
[23] Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000)
[24] G. Zheng, W. Lu, S. Jin, C. M. Lieber, Adv. Mater. 16, 1890 (2004)
[25] Y. Cui and C. M. Lieber, Science 291, 851 (2001)
[26] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci.
Technol. B 15, 554 (1997)
[27] A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
[28] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W.
Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
[29] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15, 635 (2003)
[30] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, 71
(2000)
[31] R. S. Wagner ,W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
[32] Givargizov E. I., J. Chem. Physm. 31,20 (1975)
[33] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, Appl. Phys. Lett. 78,
2214 (2001)
[34] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci.
Technol. B 15, 554 (1997)
[35] A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
[36] K. Peng, Z. Huang, J. Zhu, Advanced Materials 16, 73 (2004)
[37] K. Jae-Ryoung, H. Oh, H. M. So, J. J. Kim , J. Kim, C. J. Lee, S. C. Lyu,
Nanotechnology, 13, 701 (2002)
[38] James D. Plummer, Michael D. Deal, Peter B. Griffin, Silicon VLSI Technology,
Prentice Hall, 2000, p.716
[39] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Yi, P. Chen, M. Meyyappan, Nano Lett.
4, 1247 (2004)
[40] C. Yang, C. J. Barrelet, F. Capasso, C. M. Lieber, Nano Lett. 6, 2929 (2006)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43532-
dc.description.abstract本篇論文成功的利用化學氣相沉積法(CVD)經由氣-液-固相 (VLS)的成長機
制,並且在成長過程中加上電場得到矽奈米線p-i-n 接面,論文首先探討和矽奈米線
長度與成長時間的關係,之後再從一系列的分析來了解矽奈米線的結構及電子特
性,並且在經由後段處理後使雜訊變小電性變佳,接著重複量測p-i-n 矽奈米線的電
子特性,最後再由靜電原子力顯微鏡(EFM)來定義所成長的矽奈米線的p 型,.i 型和
n 型的接面位置.
zh_TW
dc.description.abstractThe electric-field directed growth of silicon nanowire (SiNWs) p-i-n junction
was fabricated successfully by chemical vapor deposition via the vapor-liquid-solid
(VLS) growth mechanism in a low pressure chemical vapor deposition (LPCVD)
system. In this thesis, the length of SiNWs as a function of growth time was first
investigated. Then the electric and structure properties of the SiNWs were measured
using a series of analysis tools. The growth mechanism and electrical characteristics of
SiNWs p-i-n junction are investigated and explained. .the repeated I-V measurement of
p-i-n junction SiNWs are also demonstrated. In the end, the electrostatic force
microscopy (EFM) was used to define the position of p-I and i-n junctions in the
SiNWs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:22:58Z (GMT). No. of bitstreams: 1
ntu-98-R96943101-1.pdf: 5708464 bytes, checksum: cf2700c5b4042291e569ad9778ae4187 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
Chapter 1 Introduction..............................................................................1
Chapter 2 Experimental............................................................................4
2.1 Deposition system.....................................................................................................4
2.2 Preparation...............................................................................................................6
2.3 Deposition Procedures.............................................................................................6
2.4 Measurement Techniques........................................................................................7
2.4.1 Current – Voltage characteristics....................................................................7
2.4.2 Thickness Measurement of buffer SiO2.........................................................8
2.4.3 Thickness Measurement of Metal electrodes..................................................8
2.4.4 Characterization of Silicon Nanowires...........................................................8
Chapter 3 The Electric-Field-Directed Growth of p-type, p-i-n Junction
Silicon Nanowires...................................................................10
3.1 Vapor-Liquid-Solid (VLS) Mechanism................................................................12
3.1.1 VLS- assisted silicon nanowire growth.........................................................12
3.1.2 The role of the metal catalyst.........................................................................17
3.2 Electric-Field-Directed Growth of Silicon Nanowires........................................17
3.3 Sample Preparation...............................................................................................23
3-4 Results and Discussion..........................................................................................29
3.4.1 The growth of p-type SiNWs and the ohmic contact formation.....................29
3.4.2 The growth of n-type SiNWs and the ohmic contact formation.....................32
3.4.3 The relationship between deposition time and the length of SiNWs..............33
3.4.3 The growth of p-i-n junction SiNWs………………………………………….39
Chapter4 Electrical characteristics and EFM measurement of p-i-n
junction SiNWs......................................................................59
4.1 Sample preparation before the electrical measurement.....................................59
4.2 Results.....................................................................................................................60
4.2.1 Repeated I-V measurement and corresponding SEM images........................60
4.2.2 Electrostatic force microscopy (EFM) measurement......................64
Chapter 5 Conclusions.............................................................................76
Reference..................................................................................................78
Appendix A Working Principle of EFM.................................................82
dc.language.isozh-TW
dc.subject矽奈米線zh_TW
dc.subjectSilicon Nanowireen
dc.titlep-i-n矽奈米線元件的成長及特性zh_TW
dc.titleThe Growth and Characteristics of p-i-n Silicon Nanowire Deviceen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄(Hao-Hsiung Lin),林致廷(Chih-Ting Lin),陳敏璋(Min-Jaug Chen)
dc.subject.keyword矽奈米線,zh_TW
dc.subject.keywordSilicon Nanowire,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2009-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
5.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved