Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張所鋐(Shuo-Hung Chang)
dc.contributor.authorPo-Yu Chien
dc.contributor.author紀柏伃zh_TW
dc.date.accessioned2021-06-15T02:22:54Z-
dc.date.available2011-08-19
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-18
dc.identifier.citation1. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p.p. 56-58.
2. Gohier, A., et al., Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon, 2008. 46(10): p.p. 1331-1338.
3. Nasibulin, A., et al., Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon, 2005. 43(11): p.p.2251-2257.
4. Inoue, T., I. Gunjishima, and A. Okamoto, Synthesis of diameter-controlled carbon nanotubes using centrifugally classified nanoparticle catalysts. Carbon, 2007. 45(11): p.p. 2164-2170.
5. Liu, X., et al., Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates. J. Phys. Chem. B, 2006. 110(41): p.p. 20102-20106.
6. Saito, Y., et al., Iron particles nesting in carbon cages grown by arc discharge. Chemical Physics Letters, 1993. 212(3-4): p.p.379-383.
7. Rao, C. and R. Sen, Large aligned-nanotube bundles from ferrocene pyrolysis. Chemical Communications, 1998. 1998(15): p.p.1525-1526.
8. Satishkumar, B., A. Govindaraj, and C. Rao, Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ. Chemical Physics Letters, 1999. 307(3-4): p.p. 158-162.
9. Hampel, S., et al., Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon, 2006. 44(11): p.p. 2316-2322.
10. Muller, C., et al., Growth Aspects of Iron-Filled Carbon Nanotubes Obtained by Catalytic Chemical Vapor Deposition of Ferrocene. The Journal of Physical Chemistry C, 2009. 113(7): p.p. 2736-2740.
11. Deck, C.P. and K. Vecchio, Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes. Carbon, 2005. 43(12): p.p. 2608-2617.
12. Leonhardt, A., et al., Synthesis and properties of filled carbon nanotubes. Diamond & Related Materials, 2003. 12(3-7): p.p. 790-793.
13. Shi, C.X. and H.T. Cong, Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles. Journal of Applied Physics, 2008. 104(3): p. 034307.
14. Monch, I., et al. Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application. 2007: Institute of Physics Publishing.
15. Terrones, H., et al., Magnetism in Fe-based and carbon nanostructures: Theory and applications. Solid State Sciences, 2006. 8(3-4): p.p. 303-320.
16. Sano, N., M. Naito, and T. Kikuchi, Enhanced field emission properties of films consisting of Fe-core carbon nanotubes prepared under magnetic field. Carbon, 2007. 45(1): p.p. 78-82.
17. Lv, R.T., et al., Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber. Applied Physics Letters, 2008. 93(22): p. 223105
18. Soldano, G. and M. Mariscal, On the structural and mechanical properties of Fe-filled carbon nanotubes—a computer simulation approach. Nanotechnology, 2009. 20(165705): p. 165705.
19. Iijima, S., et al., Structural flexibility of carbon nanotubes. The Journal of Chemical Physics, 1996. 104(5): p.p. 2089-2092.
20. Natsuki, T. and M. Endo, Structural dependence of nonlinear elastic properties for carbon nanotubes using a continuum analysis. Applied Physics A: Materials Science & Processing, 2005. 80(7): p.p.1463-1468.
21. Sanchez-Portal, D., et al., Ab-initio structural, elastic, and vibrational properties of carbon nanotubes. Arxiv preprint cond-mat/9811363, 1998.
22. Treacy, M.M.J., T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996. 381(6584): p.p. 678-680.
23. Wong, E., P. Sheehan, and C. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997. 277(5334): p.p. 1971.
24. Salvetat, J., et al., Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters, 1999. 82(5): p.p. 944-947.
25. Qi, H., et al., Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. Journal of the Mechanics and Physics of Solids, 2003. 51(11): p.p. 2213-2237.
26. Lu, J. and J. Han, Carbon nanotubes and nanotube-based nano devices. Quantum-Based Electronic Devices and Systems, 1998: p.p. 101–23.
27. McCarter, C., et al., Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. Journal of Materials Science, 2006. 41(23): p.p. 7872-7878.
28. Zbib, A., et al., The coordinated buckling of carbon nanotube turfs under uniform compression. Nanotechnology, 2008. 19(17): p. 175704.
29. Tong, T., et al., Height Independent Compressive Modulus of Vertically Aligned Carbon Nanotube Arrays. Nano Lett, 2008. 8(2): p.p. 511-515.
30. Hertz, H., J. Reine and Angewandte Mathematik, 1882. 92: p. 156.
31. Boussinesq, J., Application des Potentiels a l’etude de l’equilibre et du movement des solides elastiques, 1885.
32. Tabor, D., A simple theory of static and dynamic hardness. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948: p.p. 247-274.
33. Sneddon, I., The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci, 1965. 3(1): p.p. 47–57.
34. Oliver, W. and G. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992. 7(6): p.p. 1564-1583.
35. Pharr, G., W. Oliver, and F. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. Journal of Materials Research, 1992. 7(3): p.p. 613-617.
36. Wittling, M., et al., Influence of thickness and substrate on the hardness and deformation of TiN films. Thin Solid Films, 1995. 270(1-2): p.p. 283-288.
37. Weppelmann, E. and M. Swain, Investigation of the stresses and stress intensity factors responsible for fracture of thin protective films during ultra-micro indentation tests with spherical indenters. Thin Solid Films, 1996. 286(1-2): p.p. 111-121.
38. Li, Z., A generalized load-penetration relation for sharp indenters and the indentation size effect. Journal of applied mechanics, 2002. 69: p.p. 394.
39. Swadener, J., E. George, and G. Pharr, The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids, 2002. 50(4): p.p. 681-694.
40. Elmustafa, A. and D. Stone, Indentation size effect in polycrystalline FCC metals. Acta Materialia, 2002. 50(14): p.p. 3641-3650.
41. Nix, W. and H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998. 46(3): p.p. 411-425.
42. Baker, S., Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime. Thin Solid Films, 1997. 308(309): p.p. 289–96.
43. Bhushan, B., Handbook of Micro/Nanotribology, 2nd Edition. 1999, CRC Press: BocaRaton.
44. McElhaney, K., J. Vlassak, and W. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. Journal of Materials Research, 1998. 13(5): p.p.1300-1306.
45. Bolshakov, A. and G. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. Journal of Materials Research, 1998. 13(4): p.p.1049-1058.
46. Venkatesh, T., et al., Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction. Scripta Materialia, 2000. 42(9): p.p. 833-839.
47. Liu, Q., et al., Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures. Carbon, 2008. 46(14): p.p. 1892-1902.
48. Kozhuharova-Koseva, R., et al., Relation between Growth Parameters and Morphology of Vertically Aligned Fe-filled Carbon Nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures, 2007. 15(2): p.p.135-143.
49. Mesarovic, S., et al., Mechanical behavior of a carbon nanotube turf. Scripta Materialia, 2007. 56(2): p.p.157-160.
50. Cao, A., et al., Super-Compressible Foamlike Carbon Nanotube Films. Science, 2005. 310(5752): p.p. 1307-1310.
51. Pathak, S., et al., Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon, 2009.
52. Hibbeler, R., Mechanics of Material, 2000, Prentice Hall International, Inc.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43528-
dc.description.abstract奈米碳管是近幾年來引起話題的新興材料,尤其是鍵結上的特殊結構與極小的尺寸都使奈米碳管在電磁與機械性質更引人注目。填鐵奈米碳管叢是在成長碳管同時填入鐵奈米線於碳管中空處,由於過度元素(鐵、鈷、鎳)具軟磁性,因而更加彰顯材料之磁性能;然而,卻鮮少文獻針對填鐵奈米碳管叢之機械性質做研究,本研究中以化學氣相沉積法製備填鐵奈米碳管叢,並利用奈米壓痕技術量測填鐵碳管叢之機械性質,探討填鐵率與機械性質之間的關係。
首先,探討填鐵奈米碳管叢之成長溫度對碳管叢高度的影響,以及外加碳源對碳管叢高度的影響。固定填鐵來源 二茂鐵的用量,改變碳管成長速率就能改變填鐵的比例。在穿透式顯微鏡下觀測填鐵率後,以奈米壓痕測試不同填鐵率之填鐵碳管叢的機械性質。
實驗結果發現以成長溫度增加與外加碳源濃度提高都能增加碳管高度,外加碳源可突破單用二茂鐵成長填鐵碳管叢之高度限制;另一方面,奈米壓痕試驗的結果顯示,填鐵碳管叢之機械性質與填鐵率相關且呈現指數增加的關係,當填鐵率由增加至48.1%,彈性模數由4.9增為71.8 MPa、硬度由0.534增加為2.044 MPa。
zh_TW
dc.description.abstractCarbon nanotubes arouse a lot of interests in the field of technology. Based on the atomic structure and its tiny size, amazing electromagnetic and mechanical properties have been predicted and proved. The magnetic behavior is enhanced by means of filling iron nanowire into the hollow center of nanotube, which is as grown iron-filled carbon nanotube turfs. Besides, mechanical property of iron filled carbon nano turfs is barely discussed in related research. In this study, we aims to synthesis iron-filled carbon nanotube turfs by chemical vapor deposition and then measure the mechanical property by nanoindentation. And also, relation between mechanical property and iron filling ratio is discussed in this research.
The growth parameters, temperature of growth and concentration of additional carbon source, are controlled first to investigate the relation to height of iron filled carbon nanotube turfs. With the changes on height of carbon nanotube turfs, the iron filling ratio are also altered. The iron filling ratio and diameters of carbon nanotube is observed by transmission electron microscope and then mechanical property of each sample is measured by nanoindentation.
The results showed increasing growth temperature and concentration of additional carbon source would raise up the height of iron filled carbon nanotube turfs. When providing additional carbon source, the height limit of iron filled carbon nanotube turfs could be break through. On the other hand, the results of nanoindentation exhibit dependent relation of between mechanical property and iron filling ratio. The mechanical property would have exponential growth by increasing iron filling ratio.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:22:54Z (GMT). No. of bitstreams: 1
ntu-98-R96522612-1.pdf: 10585646 bytes, checksum: 06fee3a2e26c096bf3b69df3c3e15d3f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧 3
2.1 奈米碳管結構 3
2.2 奈米碳管製備 5
2.3 填鐵奈米碳管叢 6
2.4 奈米碳管彈性模數 8
2.4.1 奈米碳管彈性模數測定 8
2.4.2 以壓印方法測定奈米碳管叢彈性模數 11
2.5 奈米壓痕技術 14
2.5.1 基礎理論 14
2.5.2 誤差原因 19
第3章 實驗架構與設備 25
3.1 實驗流程 25
3.2 試片製程 26
3.3 化學氣相沉積法成長填鐵碳管叢 28
3.4 奈米壓痕硬度量測儀 34
3.5 觀察及量測顯微鏡(AFM、SEM、TEM) 36
第4章 結果與討論 41
4.1 填鐵碳管叢成長參數 41
4.1.1 溫度對成長高度之影響 41
4.1.2 碳源對成長高度之影響 44
4.1.3 填鐵率與碳管管徑之關係 47
4.1.4 碳管叢表面粗糙度 52
4.2 填鐵碳管叢機械性質 53
4.3 結果討論 58
第5章 結論與未來展望 63
5.1 結論 63
5.2 未來展望 64
參考文獻 65
dc.language.isozh-TW
dc.subject填鐵奈zh_TW
dc.subject米碳管叢zh_TW
dc.subject填鐵率zh_TW
dc.subject米壓痕試驗zh_TW
dc.subject機械性質zh_TW
dc.subjectNanoindentationen
dc.subjectIron-filled Carbon nanotube turfsen
dc.subjectMechanical propertyen
dc.subjectiron filling ratioen
dc.title以奈米壓痕法量測填鐵奈米碳管叢之機械性質zh_TW
dc.titleMechanical Property Measurement of Iron-filled Carbon Nanotube Turfs by Nanoindentationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張家歐(Chia-Ou Chang),楊燿州(Yao-Joe Yang)
dc.subject.keyword填鐵奈,米碳管叢,填鐵率,奈,米壓痕試驗,機械性質,zh_TW
dc.subject.keywordIron-filled Carbon nanotube turfs,iron filling ratio,Nanoindentation,Mechanical property,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2009-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
10.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved